

Frequently used acronyms:

CESM = Community Earth System Model
CAM = Community Atmosphere Model

Center update for NCAR

Peter Hjort Lauritzen (NCAR)

Working Group on Numerical Experimentation (WGNE) 40, November 3-7, 2025, Beijing, China

Overview

- CESM3/CAM7 development
- New high resolution coupled CESM1.5 dataset released
- Update on software modernization effort
(CCPP = Common Community Physics Package)
- Emulating CAM: CAMulator

CAM “manifesto”

Scope of CAM

CAM is a community model used by academia, national labs, research centers, and industry across a wide range of temporal and spatial scales.

Our “bread and butter” is

- Provide a flexible, configurable modeling system supporting coupled climate, paleo-climate, isotope, geospace (space weather), and chemistry simulations.
- Deliver community datasets, such as the CESM Large Ensemble.

Increased focus on S2S and ultra-high resolution applications!

Model versions/releases CMIP driven!

Education & Support

Bulletin board run by staff.

Yearly **CESM tutorial** at NCAR, tutorial yearly at AGU as well as individual tutorials at Universities (for that, CESM is usually run in the cloud).

CESM Simpler Models effort supports idealized configurations from baroclinic waves, simplified physics forcing, single-column to Aqua-planet configurations (*it used to take a graduate student weeks to months to set up simple configurations*). CESM is used in the classrooms at Universities!

Version (release date) Coupled Model version	CAM4 (April 2010) CCSM4	CAM5 (June 2011) CESM1	CAM6 (June 2017) CESM2	CAM7 CESM3
PBL Scheme	Table: Evolution of CAM in terms of parameterizations, dynamical cores and model/#levels and surface components			
Shallow convection				
Deep convection Scheme				
Microphysics Scheme				
Macrophysics Scheme				
Radiation Model				
Drag/Gravity wave source				
Chemistry Package				
Aerosols Model				
Dynamical cores				
Model top / #levels				
Land/Ocean Model				

Version (release date) Coupled Model version	CAM4 (April 2010) CCSM4	CAM5 (June 2011) CESM1	CAM6 (June 2017) CESM2	CAM7 CESM3											
PBL Scheme															
Shallow convection															
Deep convection Scheme															
Microphysics Scheme															
Macrophysics Scheme															
Radiation Model															
Drag/Gravity wave source															
Chemistry Package															
Aerosols Model															
Dynamical cores	FV	EUL	SLD	FV	EUL	SLD	SE	FV	EUL	SE	FV3	SE-CSLAM	MPAS	(SE-NH)	FV
Model top / #levels	~42km /26		~42km / 30			~42km / 32			~80km/93 (Mid Top: MT) & ~42km/58 (Low Top: LT)						
Land/Ocean Model															

Default CMIP dynamical core in bold font

No horizontal resolution entry in this table since CAM has been “stuck” at ~100km horizontal grid spacing for decades!

Why? See next slide

FV/FV3 - finite-volume dycore lat-lon/cubed-sphere

SE - spectral-element dynamical core on GLL grid

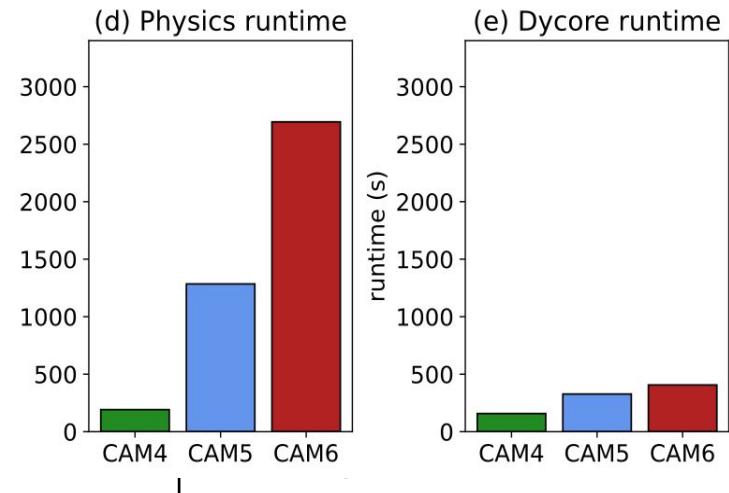
SE-CSLAM - SE with CSLAM and physics grid

EUL/SLD - spectral-transform dycore

MPAS - Model for Precision Across Scales

Version (release date)
Coupled Model version

CAM4 (April 2010)
CCSM4


CAM5 (June 2011)
CESM1

CAM6 (June 2017)
CESM2

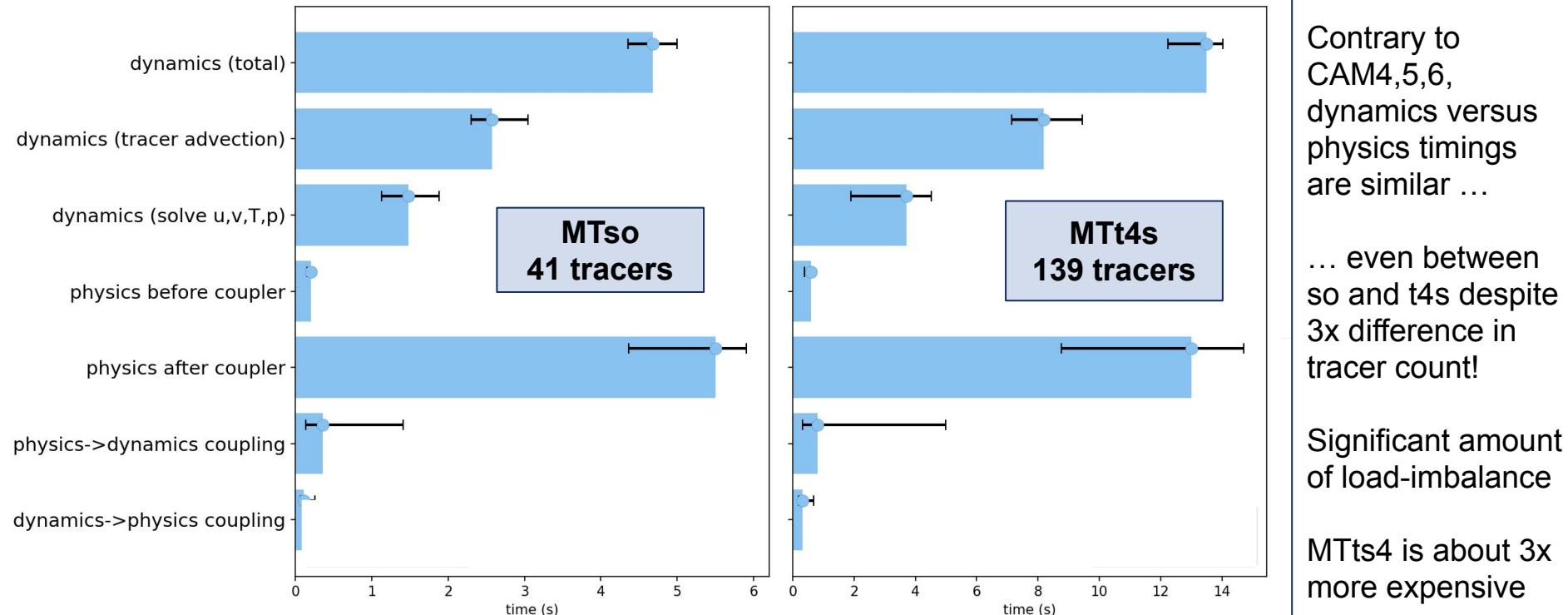
CAM7
CESM3

Figure: Computational performance metrics for CAM4 (26 levels), CAM5 (30 levels) and CAM6 (32 levels) at ~100km horizontal resolution using 144 processors and finite-volume (FV) dynamical core

Significant cost increase with model version!

Dynamics and physics are becoming more expensive

- dynamics : mostly because of tracer count and vertical resolution but also more advanced solvers!
- physics : increased complexity of process representation, aerosols, chemistry, ...

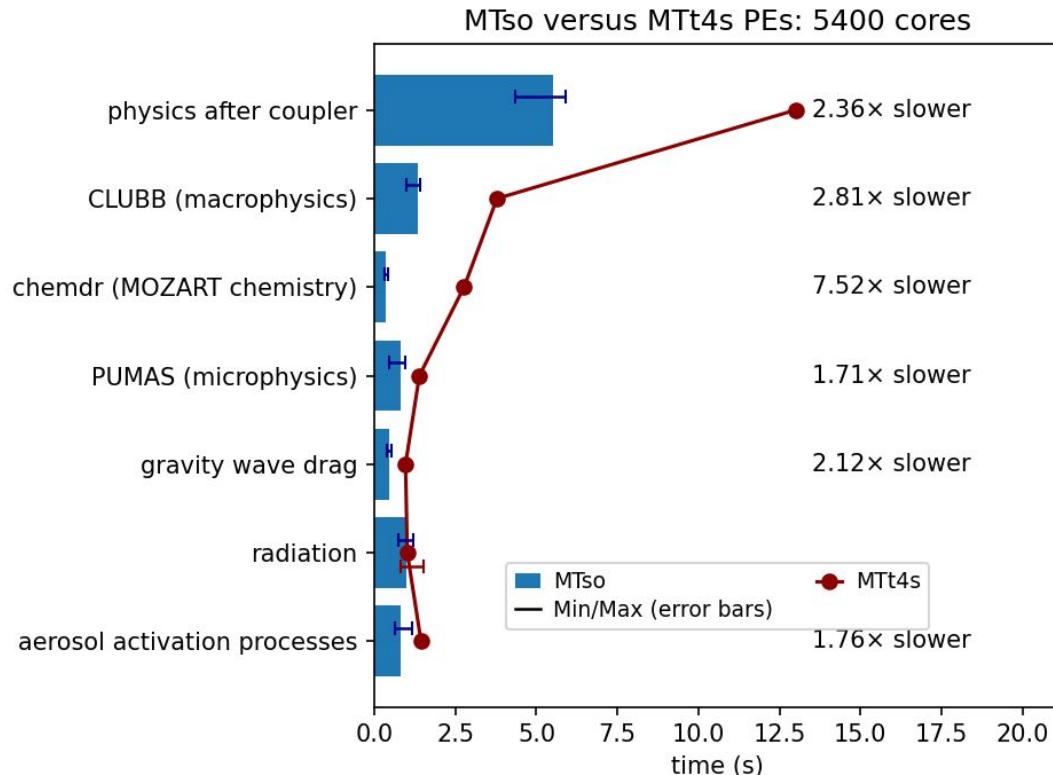

Version (release date) Coupled Model version	CAM4 (April 2010) CCSM4			CAM5 (June 2011) CESM1			CAM6 (June 2017) CESM2			CAM7 CESM3					
PBL Scheme															
Shallow convection															
Deep convection Scheme															
Microphysics Scheme															
Macrophysics Scheme															
Radiation Model															
Drag/Gravity wave source															
Chemistry Package															
Aerosols Model															
Dynamical cores	FV	EUL	SLD	FV	EUL	SLD	SE	FV	EUL	SE	FV3	SE-CSLAM	MPAS	(SE-NH)	FV
Model top / #levels	~42km / 26		~42km / 30			~42km / 32			~80km/93 (Mid Top: MT) & ~42km/58 (Low Top: LT)						
Land/Ocean Model															

FV/FV3 - finite-volume dycore lat-lon/cubed-sphere

SE - spectral-element dynamical core on GLL grid
SE-CSLAM - SE with CSLAM and physics grid

EUL/SLD - spectral-transform dycore
MPAS - Model for Precision Across Scales

Computational cost breakdown of **CAM7** with **SE-CSLAM** dynamical core: MTso (specified oxidants; 41 tracers) and MTt4s (climate chemistry; 139 tracers) wth 93 levels/~80km top (5400 processors)


Contrary to CAM4,5,6, dynamics versus physics timings are similar ...

... even between so and t4s despite 3x difference in tracer count!

Significant amount of load-imbalance

MTt4s is about 3x more expensive

Computational cost breakdown of CAM7 with SE-CSLAM dynamical core: MTso (specified oxidants; 41 tracers) and MTt4s (climate chemistry; 139 tracers) wth 93 levels/~80km top (5400 processors)

Parameterizations that perform vertical mixing of constituents (CLUBB, gravity wave scheme, ...) scale (more or less) with number of tracers

Physics scheme timings (excl. deep convection which is comparatively very cheap)

Version (release date)	CAM4 (April 2010)
Coupled Model version	CCSM4

CAM5 (June 2011)
CESM1

CAM6 (June 2017)
CESM2

CAM7
CESM3

PBL Scheme
Shallow convection
Deep convection Scheme
Microphysics Scheme
Macrophysics Scheme
Radiation Model
Drag/Gravity wave source
Chemistry Package
Aerosols Model

Dynamical cores	FV	EUL	SLD	FV	EUL	SLD	SE	FV	EUL	SE	FV3	SE-CSLAM	MPAS	(SE-NH)	FV
Model top / #levels	~42km /26			~42km / 30				~42km / 32				~80km/93 (Mid Top: MT) & ~42km/58 (Low Top: LT)			
Land/Ocean Model															

After 2+ decades we finally have a new default dynamical core!

Less grid points towards the poles than regular lat-lon grids has likely degraded polar climate simulation

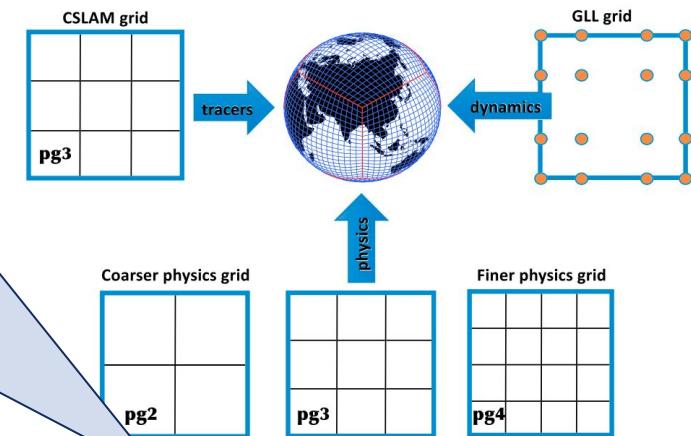
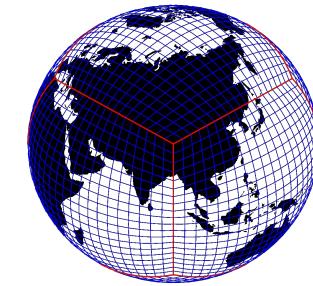
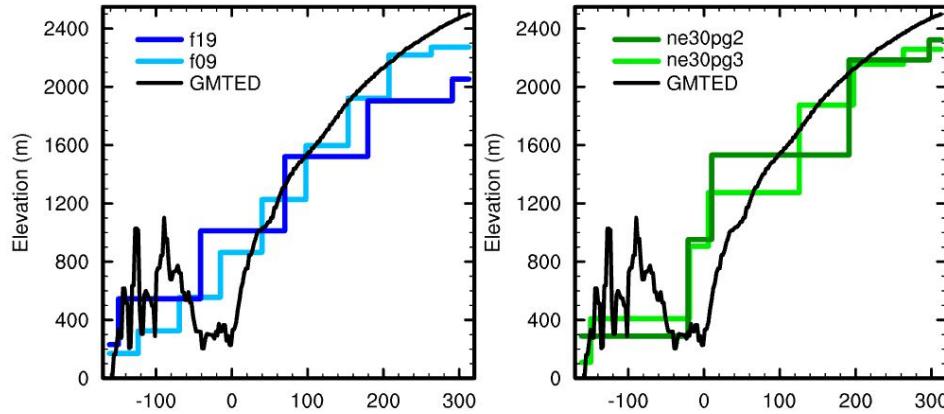
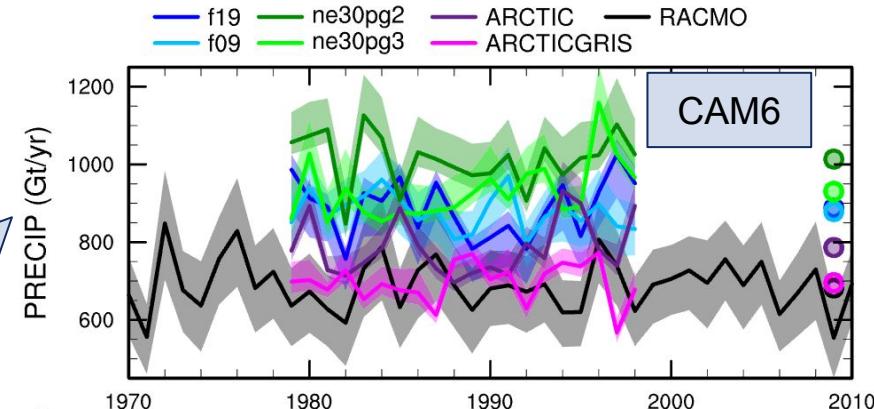


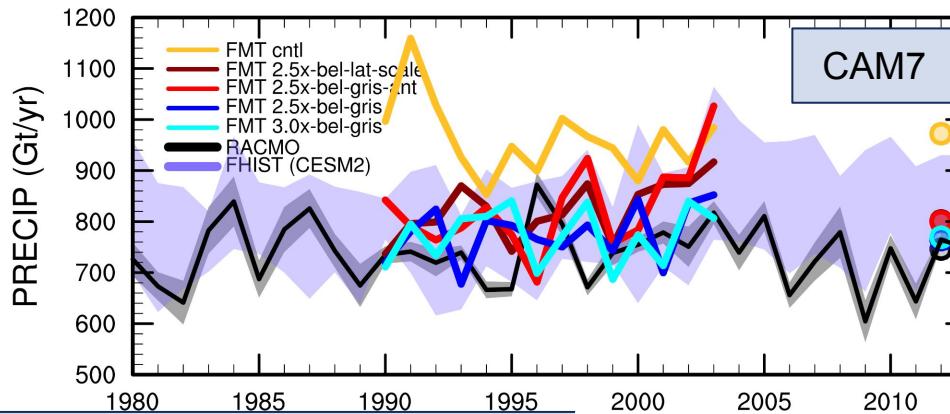
Figure 1. An overview of the different grids in CAM-SE-CSLAM.



FV/FV3 - finite-volume dycore lat-lon/cubed-sphere

SE - spectral-element dynamical core on GLL grid
SE-CSLAM - SE with CSLAM and physics grid


EUL/SLD - spectral-transform dycore
MPAS - Model for Precision Across Scales

Cubed-sphere versus regular lat-lon grid: Greenland


<https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003192>

Less grid-points at Northern/Southern latitudes on cubed-sphere grid compared to lat-lon grid \rightarrow Greenland surface-mass balance biases increased when switching dynamical core/grid (blue \rightarrow green curves)!

Cubed-sphere versus regular lat-lon grid: Greenland

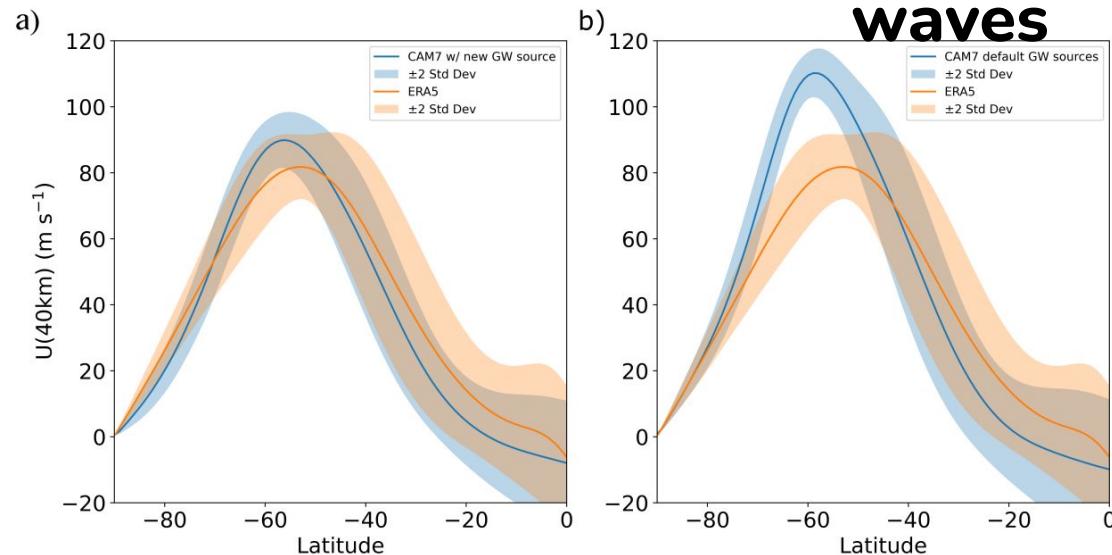
Artificially increasing SGH30
(=sub-grid-scale variance of
topography on scales below ~5km)
over Greenland (and Antarctica)
improves precipitation biases (yellow
-> blue line in plot above)

Version (release date) Coupled Model version	CAM4 (April 2010) CCSM4			CAM5 (June 2011) CESM1			CAM6 (June 2017) CESM2			CAM7 CESM3					
PBL Scheme	HB			UW			CLUBB			CLUBB+ (progn. momentum fluxes)					
Shallow convection	Hack			UW			CLUBB			CLUBB+ (progn. momentum fluxes)					
Deep convection Scheme	ZM_mod1			ZM_mod1			ZM_mod2			ZM_mod3	CLUBB-MF (ultra high res; ~3km)				
Microphysics Scheme	RK			MG1			MG2			PUMAS					
Macrophysics Scheme	Zhang			Park			CLUBB			CLUBB+ (prognostic momentum fluxes)					
Radiation Model	CAMRT			RRTMG			RRTMG			RRTMGP					
Drag/Gravity wave source	McFarlane orographic GW scheme			NOGW/TMS oro			Beljaars/NOGW/AnisoOGW			Beljaars/NOGW(+moving mountains source)/AnisoOGW					
Chemistry Package	-			MOZART			MOZART			MOZART					
Aerosols Model	BAM			MAM3/CI			MAM4/CI			MAM4 (if using strat. chem. then MAM5)/CI					
Dynamical cores	FV	EUL	SLD	FV	EUL	SLD	SE	FV	EUL	SE	FV3	SE-CSLAM	MPAS	(SE-NH)	FV
Model top / #levels	~42km /26			~42km / 30			~42km / 32			~80km/93 (Mid Top: MT) & ~42km/58 (Low Top: LT)					
Land/Ocean Model	CLM4/POP2			CLM4/POP2			CLM5/POP2			CLM6/MOM6					

HB - Holtslag-Boville **TMS** – Turbulent Mtn Stress
NOGW – non-orographic gravity wave (**GW**);
 Sources: frontal and convective
{Iso/Aniso}OGW – isotropic/anisotropic orog. GW
CI - cloud droplet activation and ice nucleation
FV/FV3 - finite-volume dycore lat-lon/cubed-sphere

MG – Morrison Gettelman **UW** – U.Washington
ZM - Zhang-McFarlane
CLUBB - Cloud Layers Unified By Binormals
CLUBB-MF - Unified deep-shallow convection
SE - spectral-element dynamical core on GLL grid
SE-CSLAM - SE with CSLAM and physics grid

RT - Radiative Transfer
RRTMGP – Rapid Radiative Transfer Model
MAM – Model Aerosol Model
RK – Rasch-Kristjánsson
EUL/SLD - spectral-transform dycore
MPAS - Model for Precision Across Scales


Version (release date) Coupled Model version	CAM4 (April 2010) CCSM4	CAM5 (June 2011) CESM1	CAM6 (June 2017) CESM2	CAM7 CESM3
PBL Scheme	HB	UW	CLUBB	CLUBB+ (progn. momentum fluxes)
Shallow convection	Hack	UW	CLUBB	CLUBB+ (progn. momentum fluxes)
Deep convection Scheme	ZM_mod1	ZM_mod1	ZM_mod2	ZM_mod3 CLUBB-MF (ultra high res; ~3km)
Microphysics Scheme	RK	MG1	MG2	PUMAS
Macrophysics Scheme	Zhang	Park	CLUBB	CLUBB+ (prognostic momentum fluxes)
Radiation Model	CAMRT	RRTM ^G	RRTM ^G	RRTM ^G P
Drag/Gravity wave source	Mo GW	New sources of parameterized gravity waves		
Chemistry Package	-	MOZART	MOZART	MOZART
Aerosols Model	BAM	MAM3/CI	MAM4/CI	MAM4 (if using strat. chem. then MAM5)/CI
Dynamical cores	FV EUL SLD	FV EUL SLD SE	FV EUL SE FV3	SE-CSLAM MPAS (SE-NH) FV
Model top / #levels	~42km / 26	~42km / 30	~42km / 32	~80km/93 (Mid Top: MT) & ~42km/58 (Low Top: LT)
Land/Ocean Model	CLM4/POP2	CLM4/POP2	CLM5/POP2	CLM6/MOM6

HB - Holtslag-Boville **TMS** – Turbulent Mtn Stress
NOGW – non-orographic gravity wave (**GW**);
 Sources: frontal and convective
{Iso/Aniso}OGW – isotropic/anisotropic orog. GW
CI - cloud droplet activation and ice nucleation
FV/FV3 - finite-volume dycore lat-lon/cubed-sphere

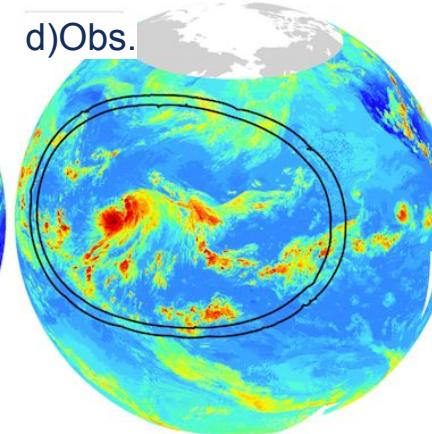
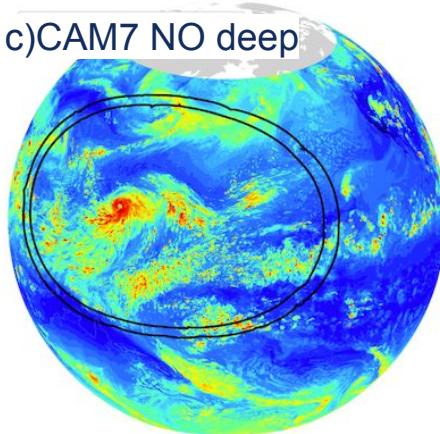
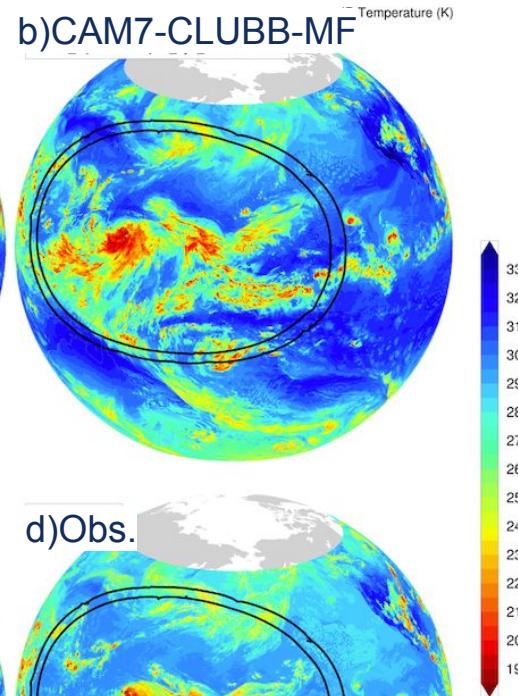
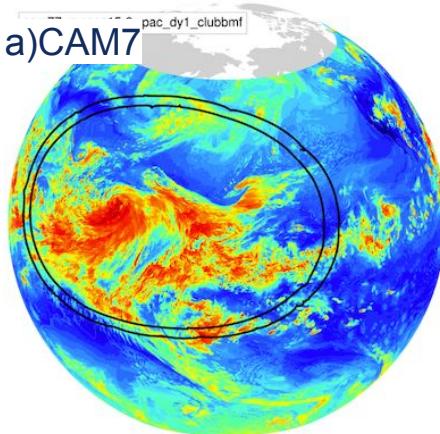
MG – Morrison Gettelman **UW** – U.Washington
ZM - Zhang-McFarlane
CLUBB - Cloud Layers Unified By Binormals
CLUBB-MF - Unified deep-shallow convection
SE - spectral-element dynamical core on GLL grid
SE-CSLAM - SE with CSLAM and physics grid

RT - Radiative Transfer
RRTM^GP – Rapid Radiative Transfer Model
MAM – Model Aerosol Model
RK – Rasch-Kristjánsson
EUL/SLD - spectral-transform dycore
MPAS - Model for Precision Across Scales

Improving representation of stratospheric Polar Vortex in Southern Hemisphere with low-frequency frontal

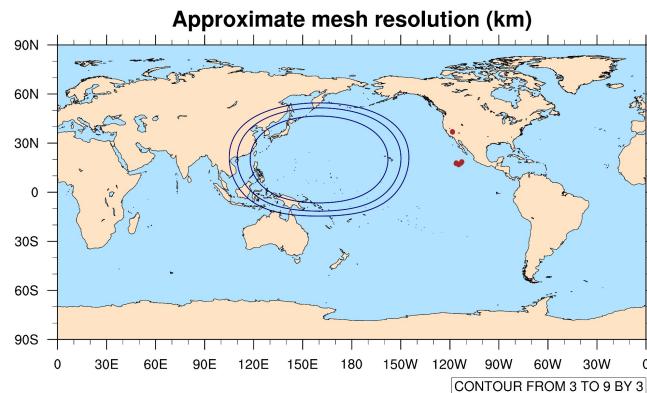
Mean zonal mean zonal wind speed for JJA at 45 km altitude of in: a) CAM7 with the new parameterization (blue) and ERA5 (orange) and b) CAM7 w/o the parameterization (blue) and ERA5 (orange). Shading in both panels shows $\pm 2\sigma$ range.

For the simulation of the polar vortex representation of the wind speed and the tilt of the jet axis has been a long-standing challenge. Inclusion of low-frequency frontal gravity waves (GWs) lead to major improvement in the representation of the Southern Hemisphere Polar Vortex. Both, the wind speed and the tilt of the jet axis have been improved by including this new parameterization. This may open up new possibilities for sub-seasonal to seasonal forecasting research.





Paper: Bramberger and Bacmeister, “Improving representation of stratospheric Polar Vortex in Southern Hemisphere with low-frequency frontal waves”, GRL, in rev.

Version (release date) Coupled Model version	CAM4 (April 2010) CCSM4	CAM5 (June 2011) CESM1	CAM6 (June 2017) CESM2	CAM7 CESM3								
PBL Scheme	HB	UW	CLUBB	CLUBB+ (progn. momentum fluxes)								
Shallow convection				progn. momentum fluxes)								
Deep convection Scheme				CLUBB-MF (ultra high res; ~3km)								
Microphysics Scheme	When we run at ~3km horizontal resolution (using MPAS dynamical core) CAM7 physics optimized for ~100km leads to "pop corn" convection											
Macrophysics Scheme	Zhang	Park	CLUBB	CLUBB+ (prognostic momentum fluxes)								
Radiation Model	CAMRT	RRTMG	RRTMG	RRTMGP								
Drag/Gravity wave source	McFarlane orographic GW scheme	NOGW/TMS oro	Beljaars/NOGW/AnisoOGW	Beljaars/NOGW(+moving mountains source)/AnisoOGW								
Chemistry Package	-	MOZART	MOZART	MOZART								
Aerosols Model	BAM	MAM3/CI	MAM4/CI	MAM4 (if using strat. chem. then MAM5)/CI								
Dynamical cores	FV	EUL	SLD	FV	EUL	SLD	SE	FV3	SE-CSLAM	MPAS	(SE-NH)	FV
Model top / #levels	~42km /26		~42km / 30		~42km / 32		~80km/93 (Mid Top: MT) & ~42km/58 (Low Top: LT)					
Land/Ocean Model	CLM4/POP2		CLM4/POP2		CLM5/POP2		CLM6/MOM6					

HB - Holtslag-Boville **TMS** – Turbulent Mtn Stress
NOGW – non-orographic gravity wave (**GW**);
 Sources: frontal and convective
{Iso/Aniso}OGW – isotropic/anisotropic orog. GW
CI - cloud droplet activation and ice nucleation
FV/FV3 - finite-volume dycore lat-lon/cubed-sphere


MG – Morrison Gettelman **UW** – U.Washington
ZM - Zhang-McFarlane
CLUBB - Cloud Layers Unified By Binormals
CLUBB-MF - Unified deep-shallow convection
SE - spectral-element dynamical core on GLL grid
SE-CSLAM - SE with CSLAM and physics grid

RT - Radiative Transfer
RRTMGP – Rapid Radiative Transfer Model
MAM – Model Aerosol Model
RK – Rasch-Kristjánsson
EUL/SLD - spectral-transform dycore
MPAS - Model for Precision Across Scales

West Pacific Mesh (15→3 km)

- Cost 17M core hrs p sim. yr
- 8M grid columns (running on 16k pes)

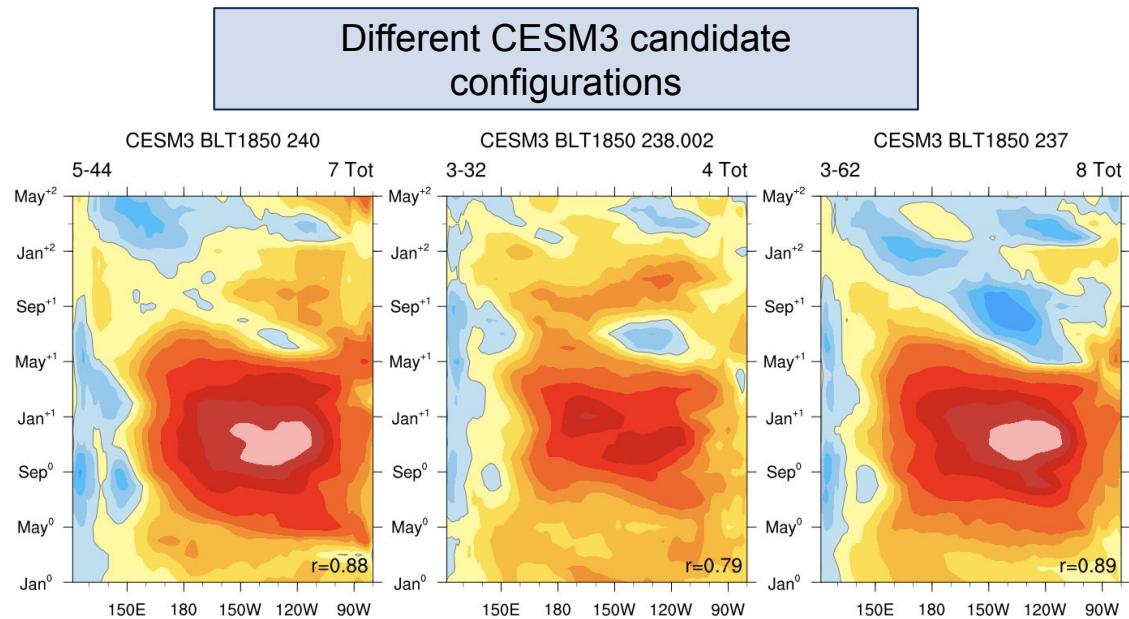
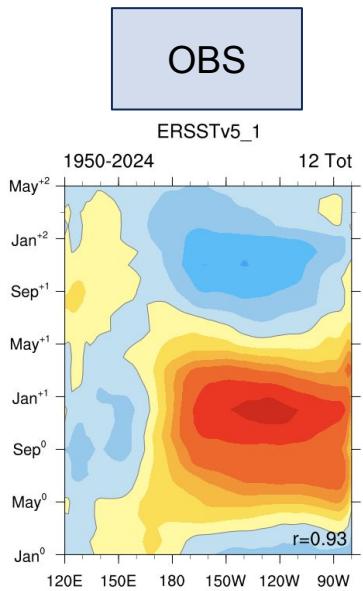
Figure: Brightness Temperature (K) snapshots from forecasts after 1 day for CAM7-MPAS with a global resolution of 15 km refined to 3 km within the black lined region for a) CAM7 optimized for low-resolution, b) CAM7 optimized for km-scale, c) CAM7 turning off parameterization of deep convection, and d) Observed geostationary IR channel brightness temperature

Version (release date)	CAM4 (April 2010)	CAM5 (June 2011)	CAM6 (June 2017)	CAM7
Coupled Model version				
PBL Scheme				
Shallow convection				
Deep convection				
Microphysics Scheme				
Macrophysics Scheme				
Radiation Model				
Drag/Gravity waves				
Chemistry Package				

NSF funded project to import DOE's non-hydrostatic spectral-element dynamical core (SE-NH) into CAM. Why?

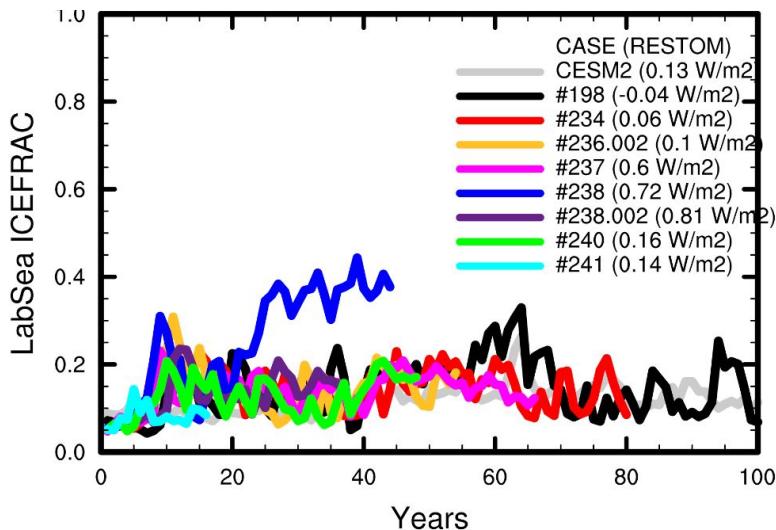
- SE-CSLAM is hydrostatic and will not be developed further after CESM3
- SE-NH is non-hydrostatic and uses ultra-fast semi-Lagrangian transport scheme (see presentation on WGNE physics-dynamics coupling effort)
- SE-NH is coded in C++/Kokkos, i.e. excellent GPU support
- Separate physics grid (like SE-CSLAM) but supports variable resolution!

Aerosols Model	BAM			MAM3/CI				MAM4/CI				MAM4 (if using SE-NH then MAM5)/CI			
Dynamical cores	FV	EUL	SLD	FV	EUL	SLD	SE	FV	EUL	SE	FV3	SE-CSLAM	MPAS	(SE-NH)	FV
Model top / #levels	~42km / 26			~42km / 30				~42km / 32				~80km/93 (Mid Top: MT) & ~42km/58 (Low Top: LT)			
Land/Ocean Model	CLM4/POP2			CLM4/POP2				CLM5/POP2				CLM6/MOM6			



HB - Holtslag-Boville **TMS** – Turbulent Mtn Stress
NOGW – non-orographic gravity wave (**GW**);
 Sources: frontal and convective
{Iso/Aniso}OGW – isotropic/anisotropic orog. GW
CI - cloud droplet activation and ice nucleation
FV/FV3 - finite-volume dycore lat-lon/cubed-sphere

MG – Morrison Gettelman **UW** – U.Washington
ZM - Zhang-McFarlane
CLUBB - Cloud Layers Unified By Binormals
CLUBB-MF - Unified deep-shallow convection
SE - spectral-element dynamical core on GLL grid
SE-CSLAM - SE with CSLAM and physics grid

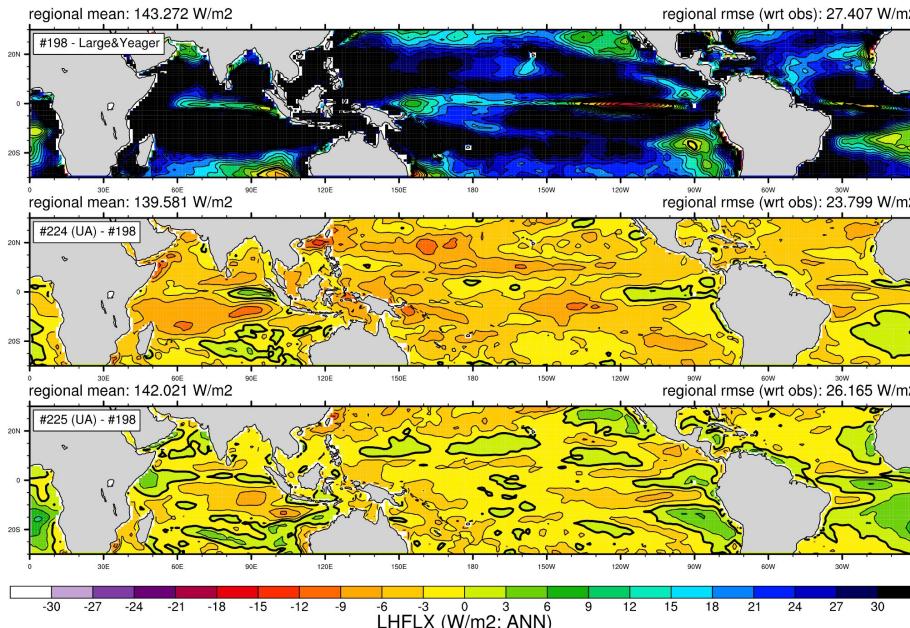
RT - Radiative Transfer
RRTMGP – Rapid Radiative Transfer Model
MAM – Model Aerosol Model
RK – Rasch-Kristjánsson
EUL/SLD - spectral-transform dycore
MPAS - Model for Precision Across Scales


CESM3 issues: La Nina transition

Struggling with El Nino -> La Nina transition. And El Nino event amplitude is too large.

CESM3 issues: Lab sea freeze

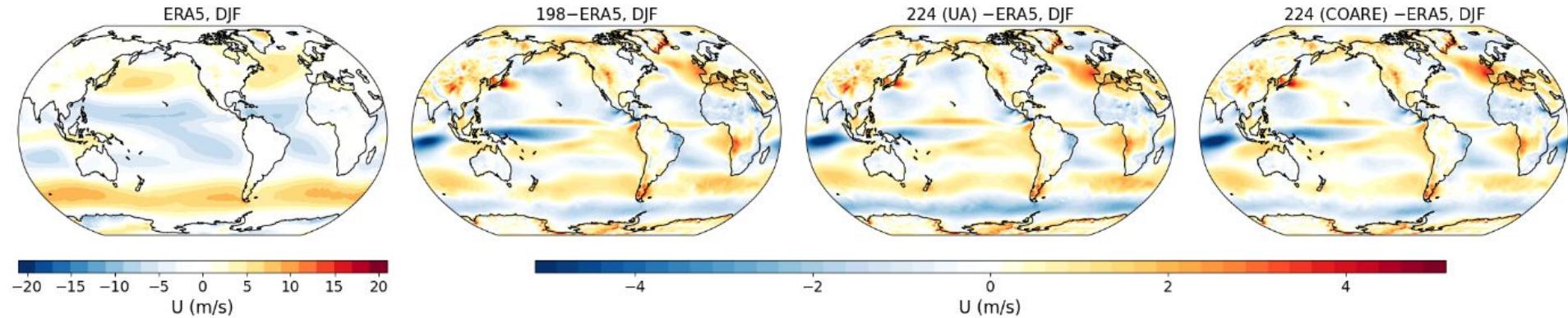
Labrador Sea freeze is still haunting us: was an issue in CESM2 and despite switching ocean component and dynamical core/grid in atmosphere, it is still an issue!



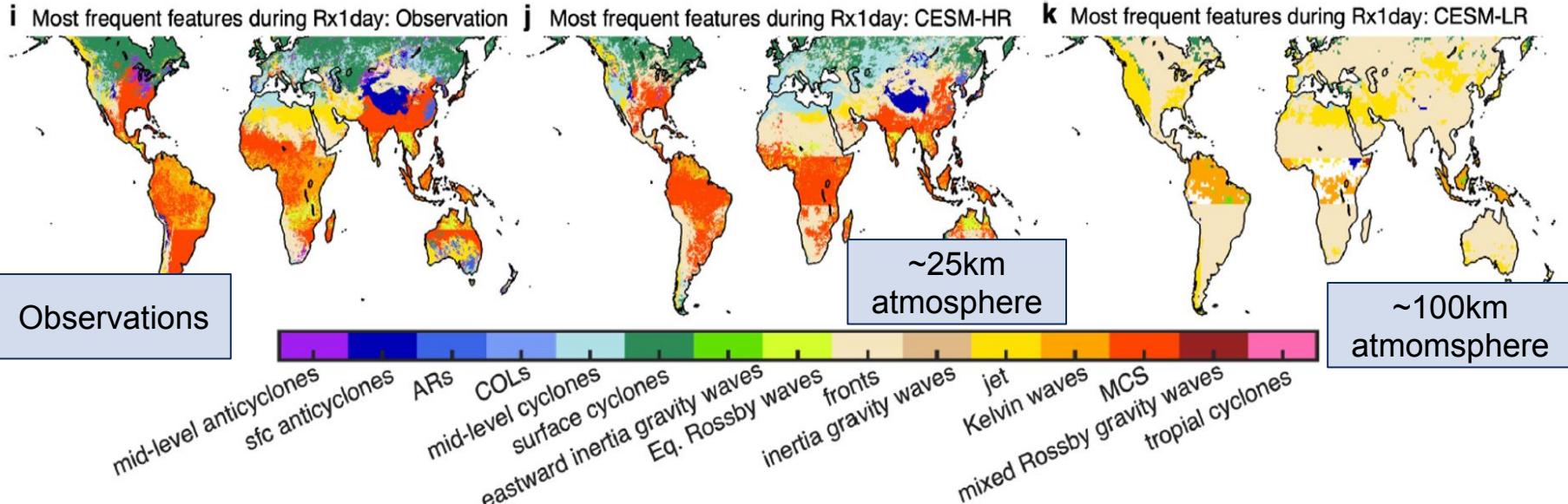
For run #238 and #238.002 the only difference is round-off perturbation in atmosphere -> prevents Lab sea freeze!

Ocean model mixing parameterizations are a factor!

CESM3 issues: latent heat flux


Our hydrological cycle is too vigorous: latent heat fluxes are larger than ERA5 (and ERA5 is likely overestimating latent heat fluxes)

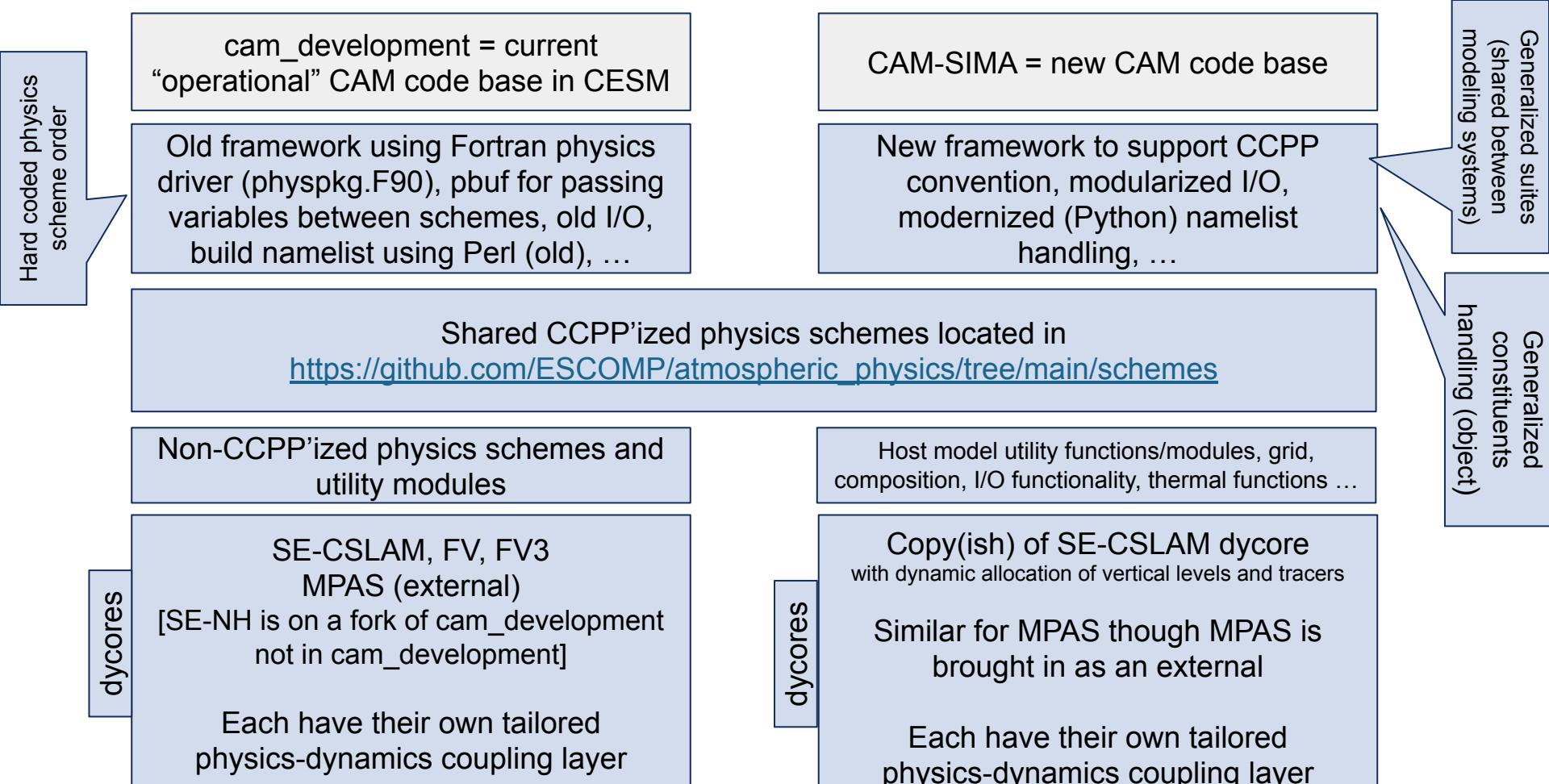
Latent heat flux (upper) bias in run #198, difference between runs with different bulk schemes and #198 (middle, lower, respectively).


The large latent heat flux could be due to excessive surface winds (i.e. probably not enough drag). See next slide

CESM3 issues: surface winds

DJF lowest model wind biases wrt to ERA5 for #198 with various bulk schemes
(see plot titles for details)

High resolution coupled climate model dataset: MESACLIP



Atmospheric Phenomena Associated with Extreme Precipitation Events

The CESM high-resolution (CESM-HR) simulations performed under the MESACLIP

MESACLIP: Understanding the Role of MESoscale Atmosphere-Ocean Interactions in Seasonal-to-Decadal CLImate Prediction

Chang, P., D. Fu, X. Liu, F. Castruccio, A. F. Prein, G. Danabasoglu, X. Wang, J. Bacmeister, Q. Zhang, N. Rosenbloom, T. King, and S. C. Bates, 2025: Atmospheric dynamical amplification intensifies future extreme precipitation events. *Nature Geoscience* (in press).

Version Coupled Model version	CAM-SIMA CAM4ish CESM3			CAM-SIMA CAM5ish CESM3				CAM-SIMA CAM6ish CESM3				CAM-SIMA CAM7 CESM3						
PBL Scheme	HB			UW				CLUBB				CLUBB+ (progn. momentum flux)						
Shallow convection	Hack			UW				CLUBB				CLUBB+ (progn. momentum flux)						
Deep convection Scheme	ZM_mod1			ZM_mod1				ZM_mod2				ZM_mod3	CLUBB-MF (ultra high res; ~3km)					
Microphysics Scheme	RK			PUMAS (MG4)				PUMAS (MG2)				PUMAS						
Macrophysics Scheme	Zhang			Park				CLUBB				CLUBB+ (prognostic momentum fluxes)						
Radiation Model	RRTMGP (CAM-FH)			RRTMGP(RRTMG)				RRTMGP (RRTMG)				RRTMGP						
Drag/Gravity wave source	McFarlane orographic (GW scheme)			NOGW/TMS ogo				Beljaars/NOGW/AnisoOGW				Beljaars/NOGW(+moving mountains source)/AnisoOGW						
Chemistry Package	-			MOZART				MOZART				MOZART						
Aerosols Model	BAM			MAM3/CI				MAM4/CI				MAM4 (if using strat. chemistry then MAM5)/CI						
Dynamical cores	FV	EUL	SLD	FV	EUL	SLD	SE	FV	EUL	SE	FV3	SE-CSLAM	MPAS	(SE-NH)	FV			
Model top / #levels	~42km /26			~42km / 30				~42km / 32				~80km/93 (Mid Top: MT) & ~42km/58 (Low Top: LT)						
Land/Ocean Model	CLM4/POP2			CLM4/POP2				CLM5/POP2				CLM6/MOM6						

Color key:

Ported to CCPP

Actively being ported

CCPP = Common Community Physics Package

CAMulator: Fast Emulation of the Community Atmosphere Model

William E. Chapman, John S. Schreck, Yingkai Sha, David John Gagne II, Dhamma Kimpara, Laure Zanna, Kirsten J. Mayer, Judith Berner

Our Framework: CREDIT

What is CREDIT?

An open foundational platform for developing and deploying AI weather and Earth system prediction models.

CREDIT enables users to build custom data and modeling pipelines to load data, train configurable AI forward models, and deploy them for real-time forecasting, hindcasting, or scenario projections.

CREDIT offers both scientifically validated model configurations and endless customization for any use case.

Datasets

ERA5

Community Atmosphere Model

GFS

CONUS 404

Models

WXFormer

NCAR FuXi

Graph Recurrent Transformer

Physics

Mass Conservation

Energy Conservation

Moisture Budget

<https://miles.ucar.edu/software/credit/>

