

Progress in Developing the Next-Generation KIM at KIAPS

Eun-Hee Lee

Korea Institute of Atmospheric Prediction Systems (KIAPS), Seoul, South Korea

- **KIAPS Project / 2024 Review**

- **Ongoing Research & Highlights in 2025**
 - Dynamics & Physics
 - Coupled System Development
 - Data Assimilation
 - Machine Learning Research, R2O ...

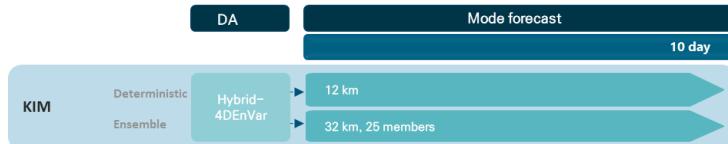
Phase I 2011~2019

Stage 2: 2014~2016

Stage 3: 2017~2019

2015 2016 2017 2018 2019 2020

Phase II 2020~2026


Stage 1: 2020~2022

Stage 2: 2023~2026

2021 2022 2023 2024 2025 2026

Korean Integrated Model, KIM

- Dynamical core (Choi et al., 2018)
 Fully compressible Euler Nonhydrostatic shallow-atmosphere
 x-y: Spectral Element Method, Cubed Sphere Grid
- Advanced Physics (Hong et al., 2018 and many others ..)
 Scale-aware subgrid physics, revision for advanced physics
- Data assimilation (Kwon et al., 2018)
 Hybrid 4D EnVar with LETKF

Next-generation seamless prediction system

From very short to extended-range predictions
 horizontal resolution 1 km ~ 32 km featuring scale-adaptive physics
 Coupled system designed for seamless prediction across scales

The Korea Institute of Atmospheric Prediction Systems (KIAPS)
delivered the global NWP system to the Korea Meteorological Administration (KMA)

KIM : Korean Integrated Model

- Cubed-sphere grid global model
- Horizontal resolution : NE360NP3 (~12 km, 20.4.~25.4.), NE576NP3 (~8 km, 25.5.~)
- Vertical resolution : 91 levels with 1 Pa top

Dynamical Core

Non-hydrostatic dynamical core

- Spectral element method
- Cubed-sphere grid (Equi-angular gnomonic projection)
- Split-explicit RK3, 2nd-order for nonlinear equation
- 6th-order horizontal diffusion and divergence damping

Physics Package

Advanced physics package

- RRTMK RAD (Baek, 2017)
- Noah LSM (Koo et al., 2017)
- Scale-aware PBL (Shin and Hong, 2015)
- GWD (Choi and Hong, 2015; Choi et al., 2018)
- Scale-aware CPS/SCV (Han et al., 2019)
- WSM5 MPS (Bae and Park, 2019)
- Prognostic CLD (Park et al., 2016)

Data Assimilation

KPOP and Hybrid-4DEnVar

- Directly assimilation of observation on the native cubed sphere
- Hybrid-4DEnVar with LETKF to generate analysis increment
- Incremental analysis update (IAU) method to update KIM analysis

Operational upgrade KIM4.0 (8 km global model)

Model: from 12 to 8 km, DA: from 32 to 24 km

+ scale-aware CPS update

KIM4.0 operation began in May 2025 at KMA

Global stretched grid and LAM approaches for short-range prediction

Domain and grid configuration, dynamics and boundary condition, test runs and stability checks, early validation, utilities

Physics update

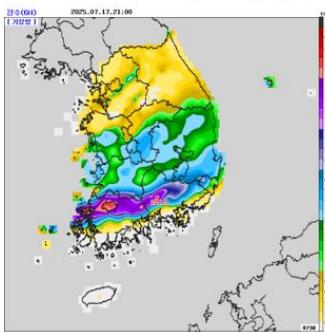
New diagnostic cloudiness scheme (Kang et al 2025), Refinement in scale-aware physics: CPS (Han 2025), improvement in subgrid orography (Koo and Hong 2025), gravity-wave drag (Kim, 2025)

Couple modeling and ensemble systems

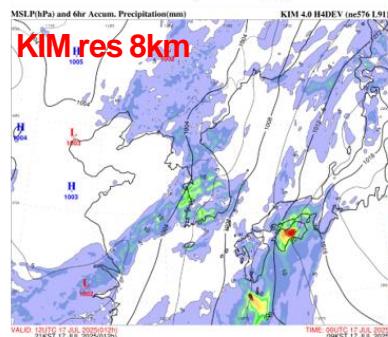
Coupling ATM-OCN-SIC-LAND models (Noah-MP, NEMO/SI³, WW3, CaMa-Flood) and initial development in weakly coupled ocean- land- data assimilation

Sub-seasonal EPS system

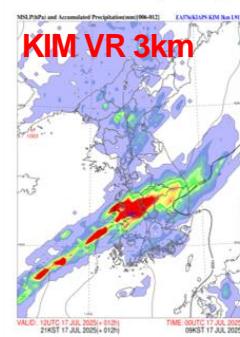
● Progress in 2025

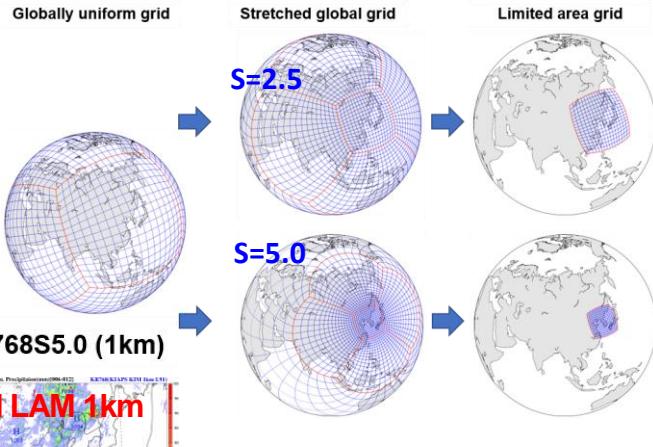
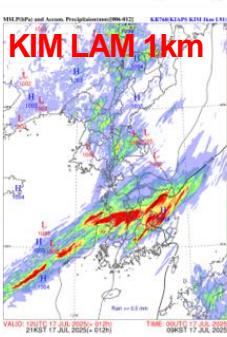

Development of Short-Range Prediction Systems: VR and LAM

➤ KIM variable-resolution grid system and the limited-area model (LAM) configuration


(1) Variable-resolution grid : a stretched global grid with an S factor
- implemented using Schmidt Transformation (*Choi and Nam, 2025*)

(2) Limited Area Model
- configured on a single panel of the cubed sphere
- incorporates lateral boundary conditions (*Kim et al., under review*)


Observation (Gauge)



KIM NE576 (8 km) global

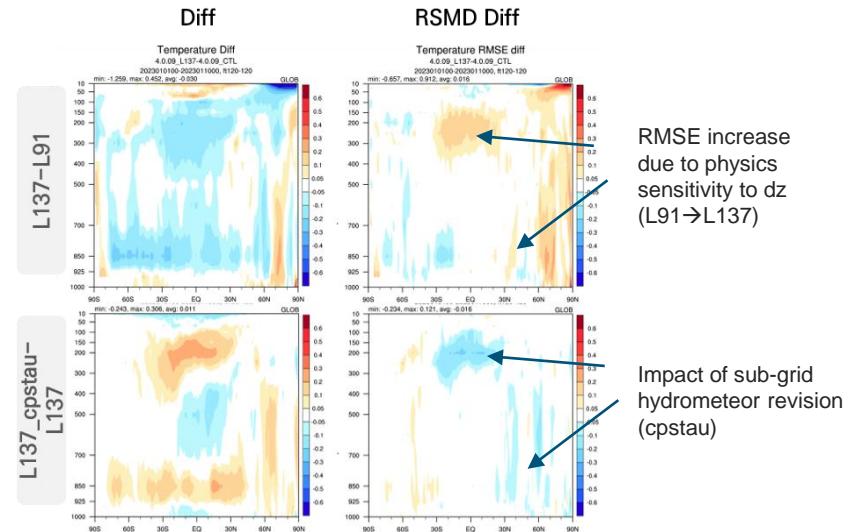
NE576S2.5 (3km)

NE768S5.0 (1km)

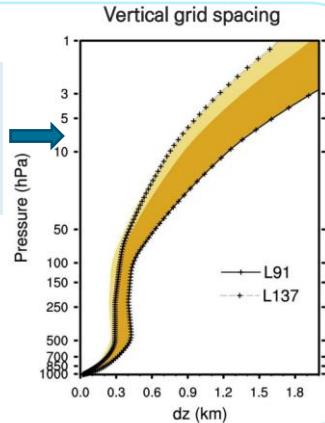
← KIAPS' internal operation testing
forecast @2025071700 +12h

I.C and Lateral BC: from 8km global KIM

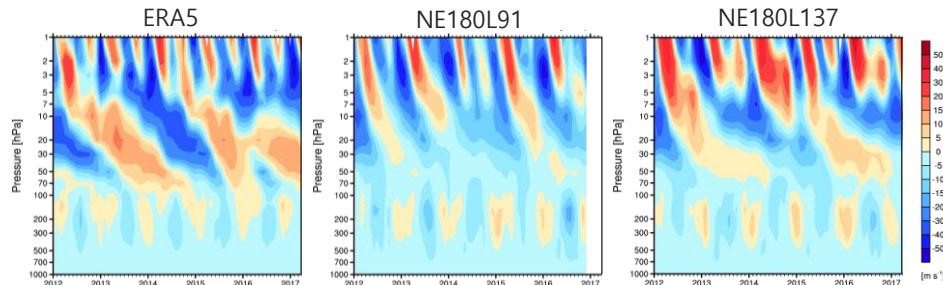
Very-high-resolution (1-3 km) systems capture intense precipitation signals
for heavy rainfall events, closely matching observations



Enhanced Vertical Resolution (91 → 137L)


Ongoing research to further improve vertical resolution

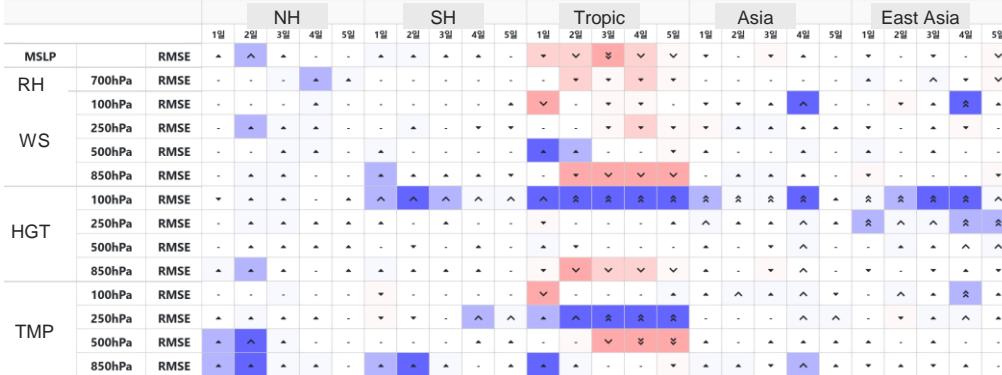
- Reduce sensitivity of sub-grid hydrometeor process to dz
 - High sensitivity of convection schemes to vertical resolution in the troposphere
→ modulating in sub-grid hydrometeor processes to mitigate sensitivity
- Advantages of higher vertical resolution in simulations
 - Improved representation of boundary layer mixing and moisture exchange
 - Enhanced stratospheric modeling, including QBO simulation


Impact of $cps\tauau$ on dz sensitivity (radiative cooling)

New vertical profile development
Utilizing ECMWF L137 profile
Top/bottom ~ identical
Overall 30% reduction in dz (below 100 hPa) ~ 40% (above 100 hPa)

QBO simulations: L91 vs L137

QBO diagnosis by +/- transition of u-wind (~5.5 S – 5.5 N average)
25 km resolution (NE180) with ERA5 initial


Revision of the Physics Package

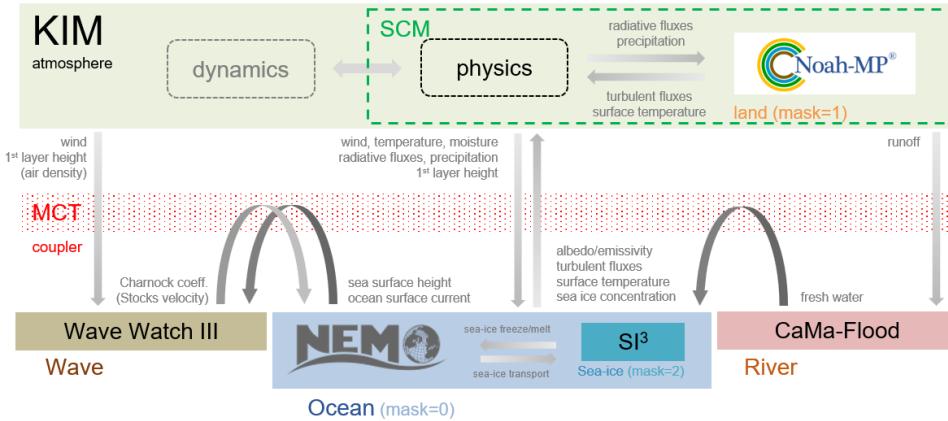
Physics candidates for the next version (→Phys26.01)

Physics	Revision candidates	Main focus
Radiation (1)	Effective radius of ice Tau (lifetime) of sub-grid cloud	Correcting systematic cooling biases in atmospheric temperature Reducing underestimation of long-wave flux at the surface RAD-MPS-CLD revision
Cloudiness	Included snow in cloud fraction	
Convection	Moisture flux considering scheme(MFC)	Precipitation (Korea/Global domain)
Radiation (2)	Modified aerosol optical characteristics	Aerosol impact, applicability
Boundary Layer	EDMF, background diffusion	Dry bias in low troposphere, near-surface cold bias
OGWD	New ancillary data (orography 4 km → 500 m)	Global wind/tmp bias, high resolution support

Verification of RAD-MPS-CLD revision,
using a low-resolution (25km) cycle testbed (Jan 2023)

KIAPS hydro_rad_cldc, KIAPS phys25.01 2023-01-01-2023-01-31, Analysis, 00 UTC

Development of a Coupled Modeling System


➤ A new coupled model built upon KIM

State-of-the-art surface models:

- Inland component: Noah-MP (V5.0), CaMa-Flood (V4.0)
- Marine component: NEMO/SI³ (V4.0), WW3 (V7.13)

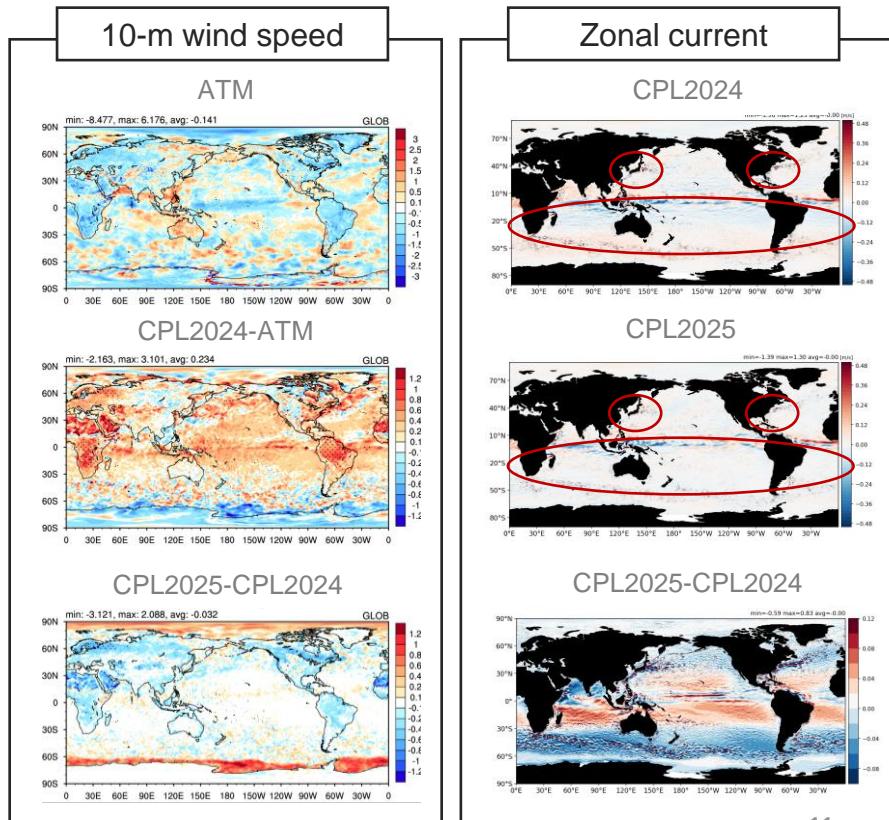
Enhanced interaction between components

- Physical consistency in parameterizations, constants, processes
- High computational/parallel efficiency
- Advancements in component model processes

:: Specification of surface components ::

	LSM			OCN	SIC	WAV	RIV		
Model	Noah-MP			NEMO	SI ³	WaveWatch III	CaMa-Flood		
Version	current	4.0.1	4.2 → 4.4	5.0	4.0	7.13	4.0.0 (4.1)		
	origin	LIS	WRF	GitHub	-	-	-		
	latest	5.1 (MAY 2025)		5.0 (DEC 2024)		7.13 (?)	4.2 (MAR 2024)		
Coupler	-			MCT-based					
Initial data	ERA5			ORAS5 (GODAPS)	ERA5/GIOMAS PIOMAS(N.H.)	-	-		
Exchange freq.	every time step (same with KIM)			1h (fixed: same with radiation)					
Grid system	cubed-sphere (same with KIM)			tripolar		(regular) lat-lon	unit-catchment		
Resolution	100~6 km (NE045~768; same with KIM)			25 km (eORCA025)		50 km	25 km		

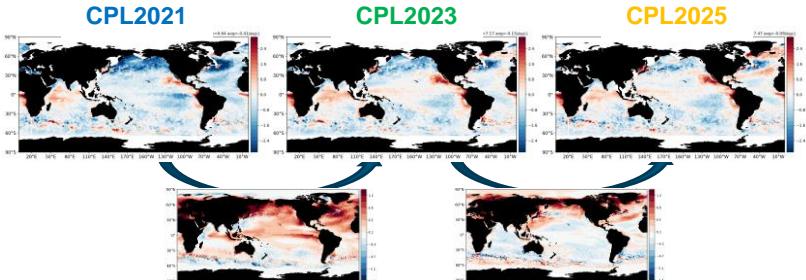
Upgrade of the Coupled Model

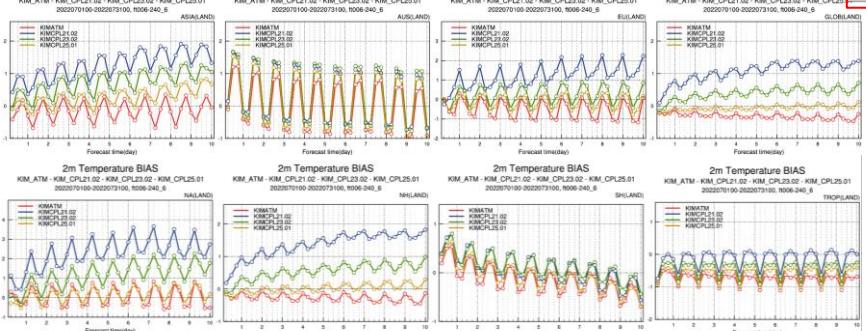

Major updates in 2025

Process	Updates
Land (Noah-MP)	<ul style="list-style-type: none">Monin-obukhov length consistency (w/ PBL)Barren type emissivity, snow thermal conductivityAdjustment of sub-grid tile fraction, roughness length, thermal conductivityStomatal-photosynthesis parameterization
Ocean (NEMO)	<ul style="list-style-type: none">eORCA025 gridLateral diffusion on momentum, TKE scheme, Prandtl numberStokes drift ancillary data, Surface turbulent mixing energyLangmuir circulation parameterizationSurface temperature parameterization consistency with KIMAdding climatological runoff
Seaice (SI ³)	<ul style="list-style-type: none">Adjustment of skin temperature parameterizationConductive flux boundary conditionIce albedo consistency with KIMEnhanced downward longwave radiationLüpkes et al. (2012)-based exchange coefficients
Wave (WW3)	<ul style="list-style-type: none">Wave-induced turbulent mixing energyStokes drift velocityH_s-based ocean roughness
Operation	<ul style="list-style-type: none">Processor decomposition, precision, stability, compile optionOutput processLand initialization

Ongoing research

- Multi-scale evaluations
- Land-atmosphere interactions, coupling processes
- River routing, lake physics
- ATM-OCN-SIC physics
- Wave model resolution improvements, sea spray effects

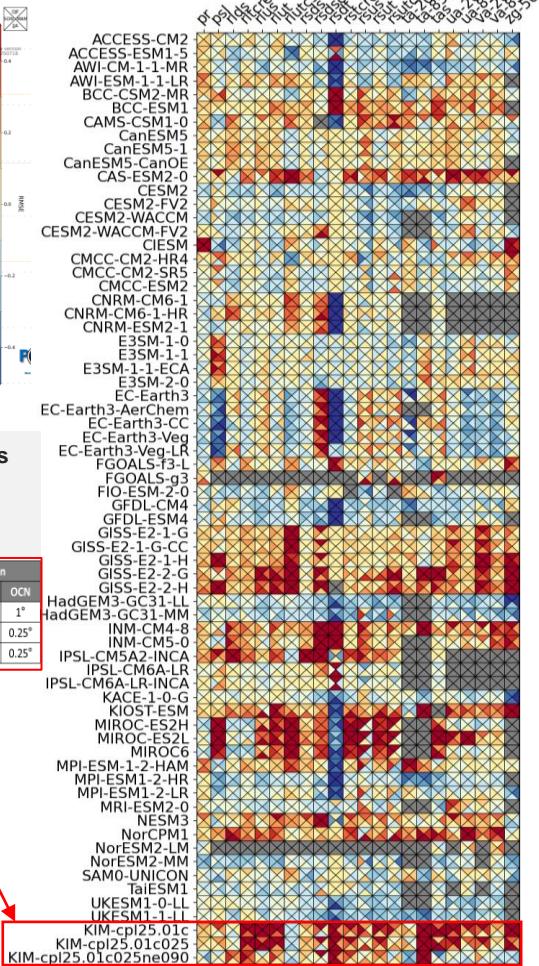

Evaluation of CPL2024 vs CPL2025


Evaluations of the KIM coupled model

Improvement in verification and testing

- Expand evaluations with Various testbeds
 - Long-term simulations (e.g. CMIP), sub-seasonal prediction, extreme events simulation
 - Single column model, off-line experiments
 - Adopting new verification tools: PCMDI, ocean verification

Mean SST bias
in JJA 2022

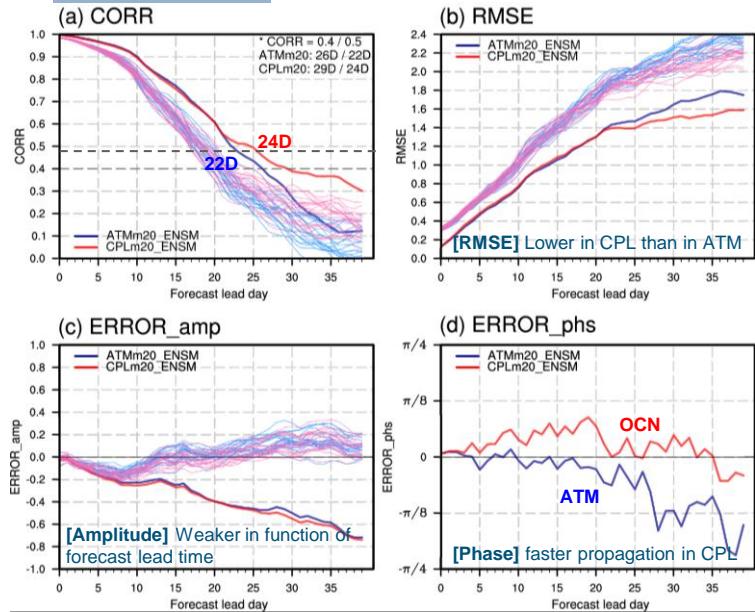


T_{2m} bias in 10-D
predictions
Jul 2022

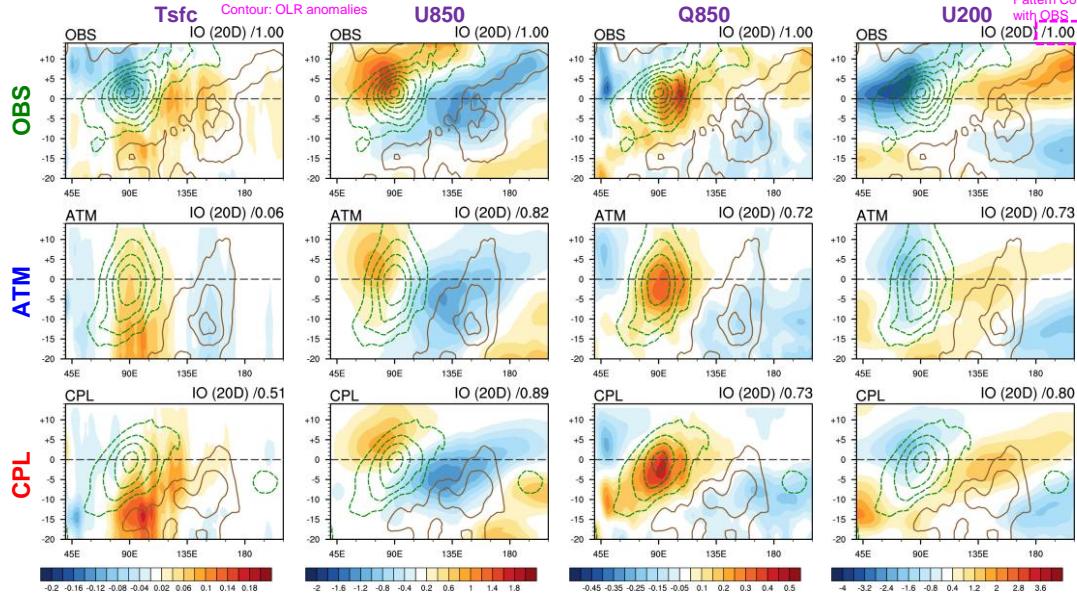
Evaluation of mean bias
in CMIP simulations
compared with CMIP6
Using PCMDI package

EXP	Period	Resolution	
		ATM	OCN
CPL25 (w/25.01)	1850~2020	ne045 (100km)	1°
CPL25_025 (w/25.02)	1850~2020	ne045 (100km)	0.25°
CPL25_025a50 (w/25.02+400)	1850~2020	ne090 (50km)	0.25°

CPL2025


MJO Prediction Skill (40-D): ATM vs CPL

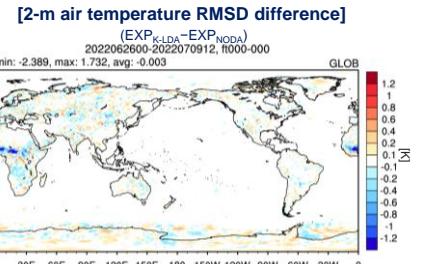
Experiment set up

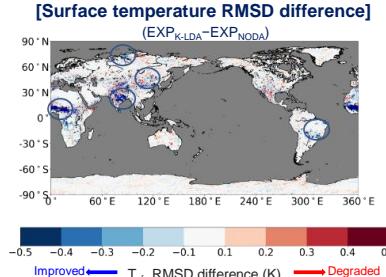
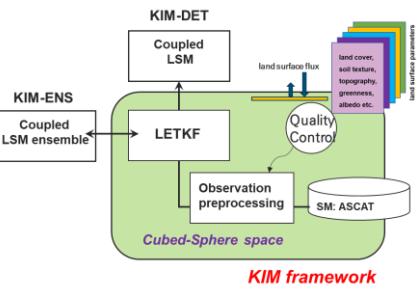

- Number of experiments: 160 set (2001-2020, 1st & 17th Jan, Feb, Nov & Dec initialization)
- Ensemble size: 20
- KIM resolution: 100km

Indian Ocean (IO) : 80-100°E, 10°S-10°N
Reqr: rescaled by -1 STD of region's OLF

Verification of MJO

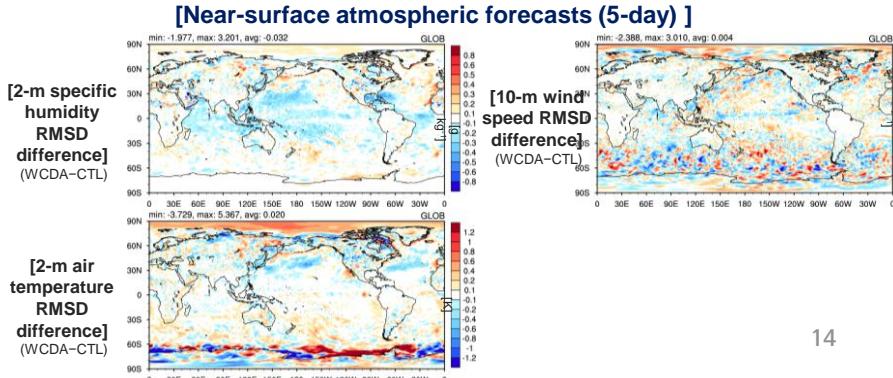
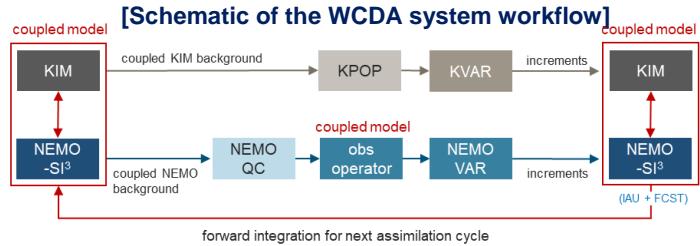
MJO propagation: Lead-lag regression for Tropical IO's OLR Anomalies



- ▶ CPL exhibits a propagation pattern more consistent with observations than ATM, particularly in terms of OLR.

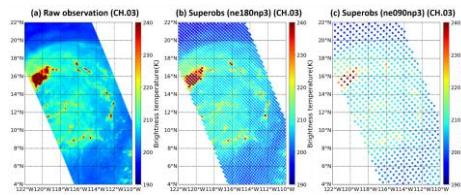
Coupled Data Assimilation



Weakly-Coupled atmosphere-land DA

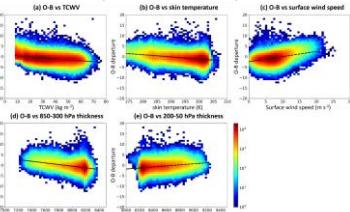
- New KIM-based land DA framework using the LETKF
- Land analysis is performed **directly on the cubed-sphere grid**
- Land **background ensemble** is generated from the **KIM ensemble forcings** combined with **additional state perturbations**
- Preliminary **ASCAT soil moisture** assimilation results demonstrate **promising performance**

Weakly-Coupled atmosphere-ocean DA

- Models in NEMOVAR (Ocean: **NEMO4**; sea-ice: **SI³**)
- DA scheme: atmosphere (**hybrid-4DEnVar**), ocean/sea-ice (**3DVar-FGAT**)
- **IAU window: -03 to 03 hours** (same as KIM)
- **WCDA enhances atmospheric forecasts** compared to the current operational KIM (CTL), which performs atmospheric DA only

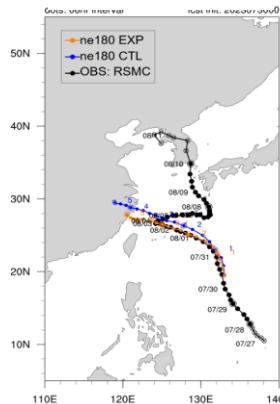


All-Sky Satellite Radiance and Convective-Scale DA

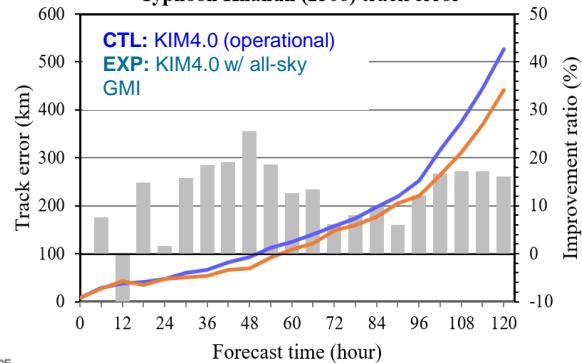

All-sky GMI radiance DA

Development of pre-processing system

[Sensitivity test on superrobbing resolution]



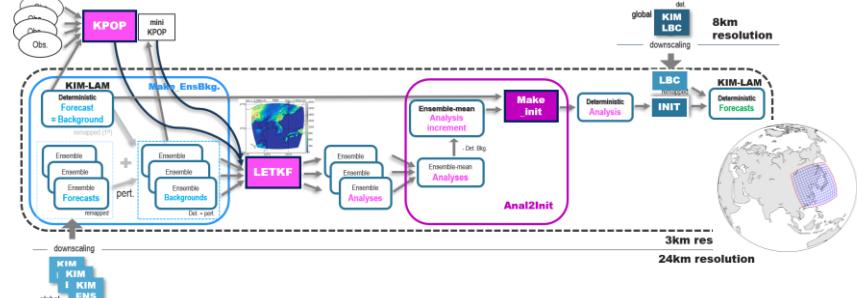
[O-B departure vs. BC predictors]



Improvement in typhoon prediction

[Khanun track]

Typhoon Khanun (2306) track error


Assimilation of all-sky radiances improves the model initial fields of mass and wind variables, contributing to enhanced typhoon track prediction.

Convective-scale DA

Development DA system for KIM limited area version (LAM)

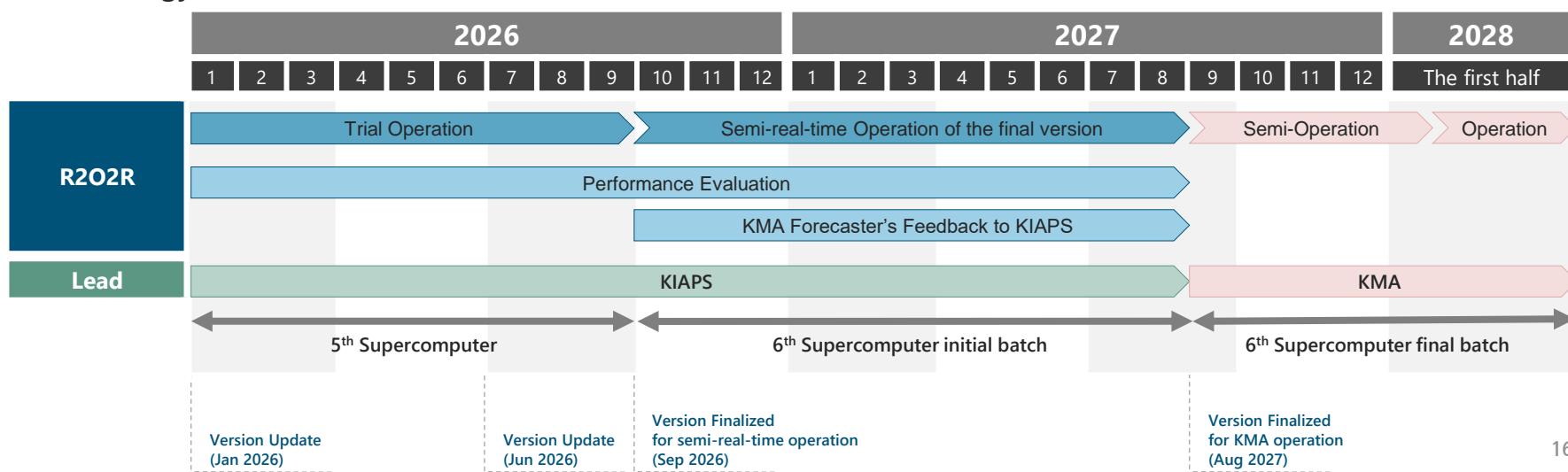
- 3 km resolution with 3-hourly analysis updates
- Ensemble perturbations provide by global KIM ensemble
- KPOP and observation operators updated for LAM background support
- LETKF assimilates high-density observations, including radar data


[Schematic of convective-scale DA system for KIM-LAM]

The initial performance of convective-scale DA

- Assimilating radar observations enhances humidity analysis over precipitation areas

[Results for CSDA responses in KIM-LAM]

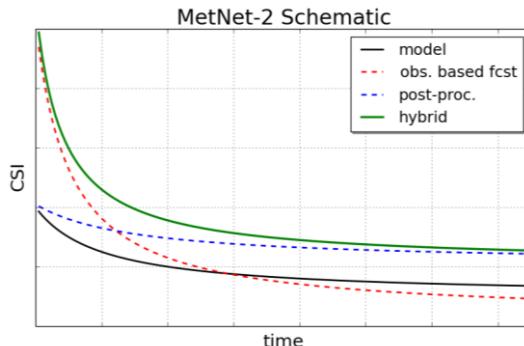


R2O Preparation for the Next-generation KIM

Current status of next-generation KIM trial operation at KIAPS

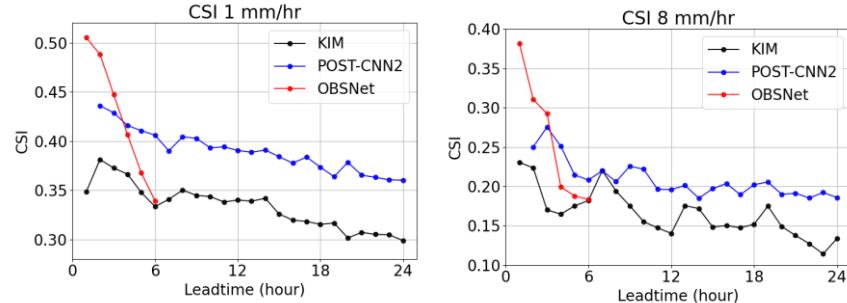
2025 KIAPS KIAPS Operation	Resolution	Fcst. range	Cycle	Operational period	Resources	Run-time	Storage
Medium range (normal cubed-sphere)	8km L91	10 days	00, 12 UTC	'24.08.22. 00 UTC ~ current	640 nodes	160 min.	4.5 TB
Short-range (stretched grid)	3-8-21km L91	5 days	00, 12 UTC	'25.07.02. 12 UTC ~ current	820 nodes	180 min.	3.0 TB
Very short-range (limited area model)	1km L91	2 days	00, 12 UTC	'25.07.02. 12 UTC ~ current	640 nodes	60 min.	0.4 TB

R2O Strategy and Plan with KIAPS-KMA collaboration


AI for short term precipitation forecast

- **Objective**

- To develop an early warning system for heavy rainfall events with a lead time of up to 24 hours.


- **Development Strategy & Architecture**

- Observation based precipitation ML model development (**OBSNet**)
 - U-Net / CNN Model (DeepRaNE, ConvLSTM)
- NWP post-processing ML model development (**POST-CNN2**)
 - U-Net / CNN model (ConvNeXT v2)
- Hybrid model development

- **Verification (preliminary results)**

- AWS (ground truth), KIM (baseline), **OBSNet**, **POST-CNN2**

Other applications of AI

- **AI for observation processing**

- Bias correction and quality control, and cloud screening

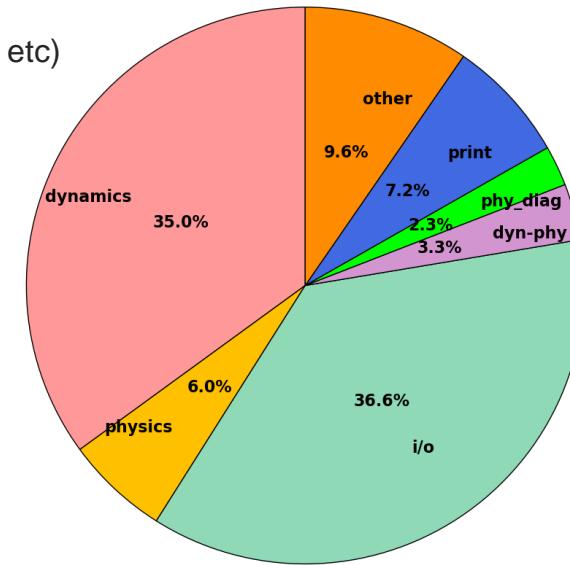
- **Machine-learning based FSOI**

- Combination with conventional approaches

Thank you

Back up

Launch of KIM4.0 (8 km Global Resolution) at KMA


The Operational 8-km KIM at KMA: Updated Version Active Since May 14, 2025

- **Optimization includes:**

- Optimization for the KMA's 5th supercomputer (compiler, I/O, environment, etc)
- "Stripe" partitioning for the cubed-sphere grid
- High performance parallel I/O method (grouping, rearrangement)

- **MPI rank average elapsed time ratio**

- 1,500 nodes (Intel Ice-Lake 8368Q 2.6GHz 38Cx2)
- 15 day time integration, Total elapse time: 160 minute
- File write elapse time ratio: 36.6% (14.7 TB output file)

MPI rank average elapse time ratio for operational KIM

Ongoing work to improve computational efficiency

- Development of an adaptive time-stepping method
- Exploring the use of large time step

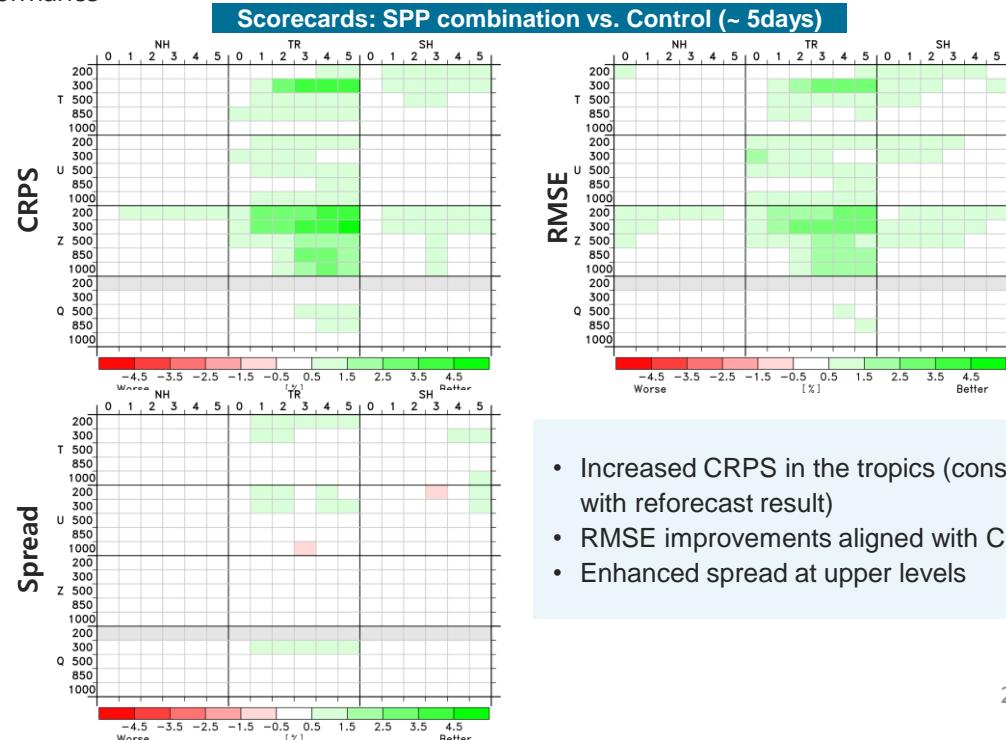
In the upcoming five year plan (2027- 2031), KIAPS aims to further improve the model's performance by utilizing advanced numerical methods, CPU optimization, I/O node development, and GPU porting.

Recent updates to the Operational Ensemble System at KMA ('25.5)

- A horizontal resolution increase from 32 km to 24 km in Global KIM EPS at KMA with the version upgrade (KIMv4.0)
- Forecast length of global-medium 12d → 15.5d

Ongoing research developing EPS systems at KIAPS (~ 2026)

- Development of a new extended-range prediction system (targeting ~4 weeks, 32-km resolution)
 - Using the KIM model
 - Coupled model system (NEMO/Si3, WW3, Noah-MP) & data assimilation
 - ➔ Two global ensemble predictions with KIM (medium-range & extended-range)
- Model uncertainty using Stochastically Perturbed Parameterizations
 - Starting from last year, intensive testing with applicable physics modules has started
 - Searching the optimal perturbation
 - Performance comparison with the current methodology (SPPT, SPDT, SSST)


Stochastically Perturbed Parametrization

Forecast performance improvement through SPP sensitivity experiments

- Assessing the impact of parameter perturbations on forecast skill
- Forecast experiments initialized on 1, 11, 21, and 31 July 2022
- 15-day forecasts with 25 members at 24 km resolution
- Verification against ERA5 reanalysis to evaluate forecast performance

[Perturbed parameter settings]			
Physics	Parameter	σ	Distribution
PBL	rl2	0.4	Log-normal
	rlamdz	0.4	Log-normal
	brcr_sbro	0.4	Log-normal
Convection	pgcon	0.4	Normal
	cinacrmx	0.4	Log-normal
Radiation	xres	0.4	Log-normal
Cloud and large-scale precipitation	prevp	0.7	Log-normal

Experiment setup	
Initial date	1, 11, 21, 31, July 2022
Forecast range	15 days
Resolution	NE192NP3 (-24km) L91
Ensemble members	25
Length scale	1,000 km
Time scale	72 h (259,200 s)

- Increased CRPS in the tropics (consistent with reforecast result)
- RMSE improvements aligned with CRPS
- Enhanced spread at upper levels