

Summary of online bias correction work across the centers

**Bias
correction
inside the DA
scheme**
ECMWF

**Online bias
correction in
forecast**
UK Met Office, ECCC,
ECMWF

**Adaptive
parameter tuning**
DWD, ECCC,
ECMWF

Spectral nudging
ECCC, CMA,
ECMWF, Meteo
France, UK
MetOffice

**Bias
correction
inside the DA
scheme**
ECMWF

**Online bias
correction in
forecast**

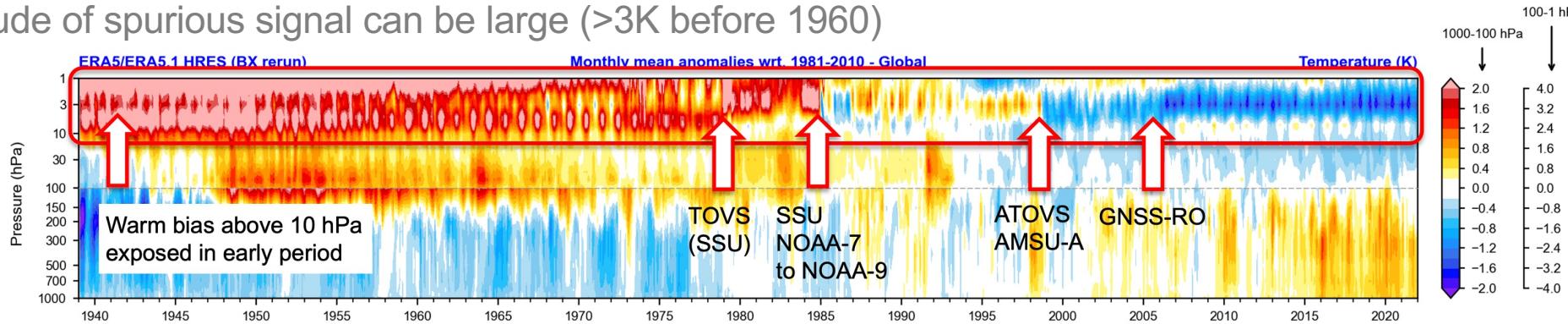
UK Met Office, ECCC,
ECMWF

**Adaptive
parameter tuning**
DWD, ECCC,
ECMWF

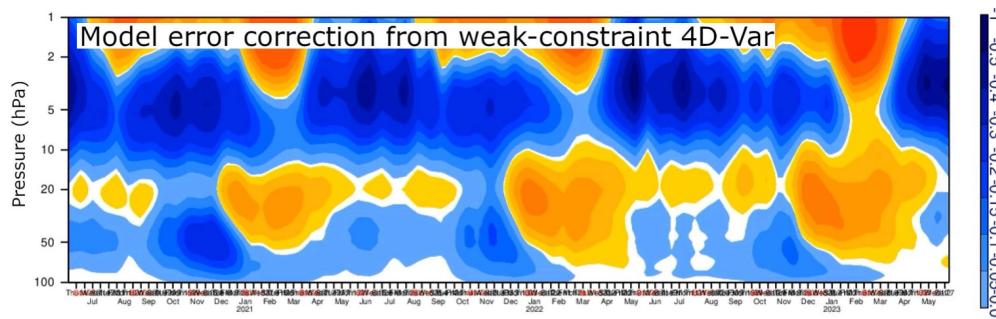
Spectral nudging
ECCC, CMA,
ECMWF, Meteo
France, UK
MetOffice

Model bias correction in ERA6 for the stratosphere

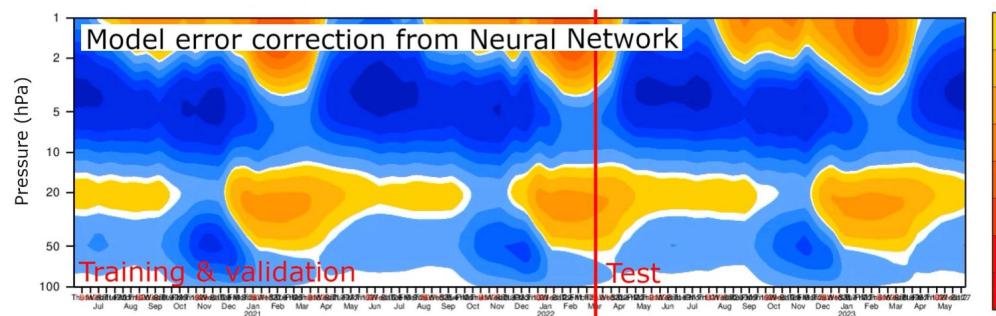
ERA5 presents artefacts in stratospheric climate trends due to model biases and ever-changing observing system. Amplitude of spurious signal can be large (>3K before 1960)



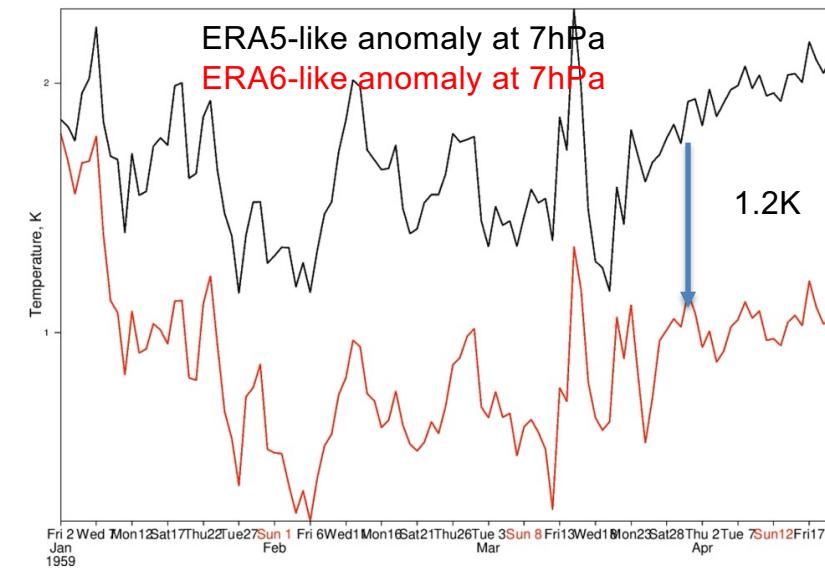
1. Weak-constraint 4D-Var estimates model biases effectively over recent periods (2021/2023)



2. This model bias correction is emulated using ML with the model first-guess as input



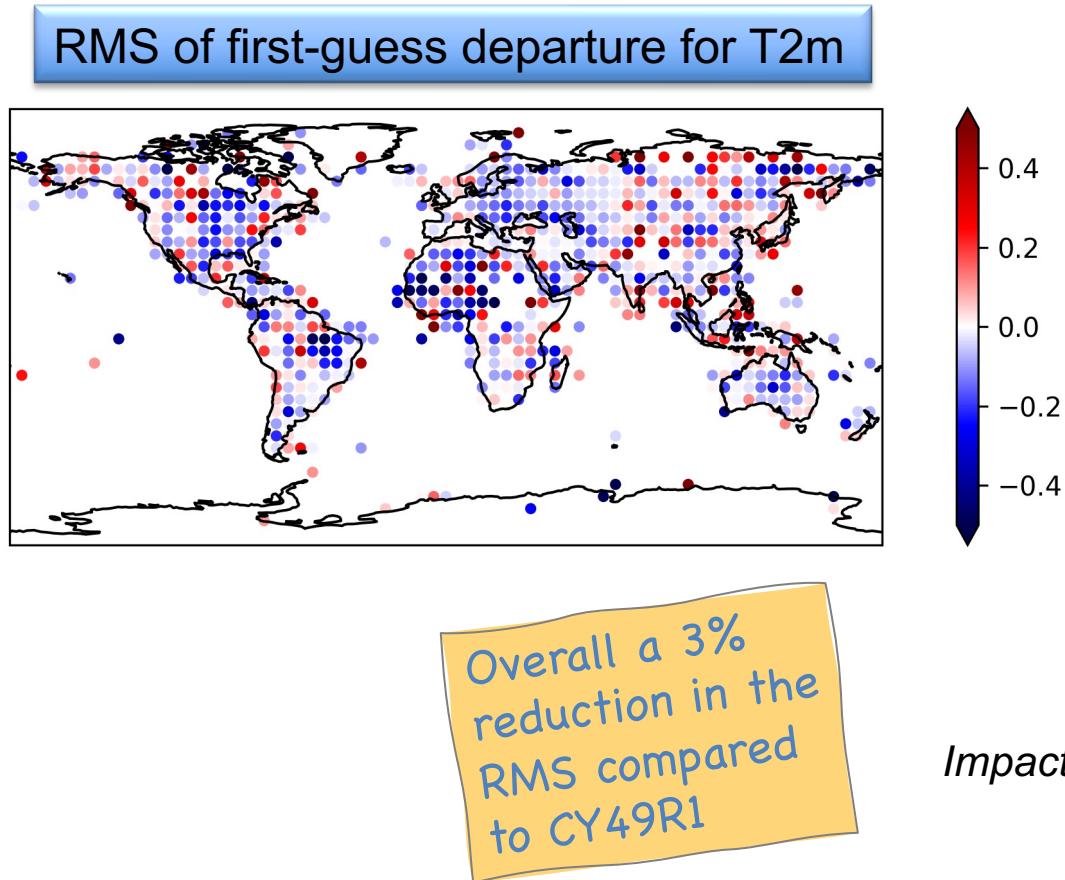
3. The ML correction can be applied over any reanalysis period (e.g. Jan 1959 to May 1959)



4. Emulator cools down the upper stratosphere to account for the warm bias

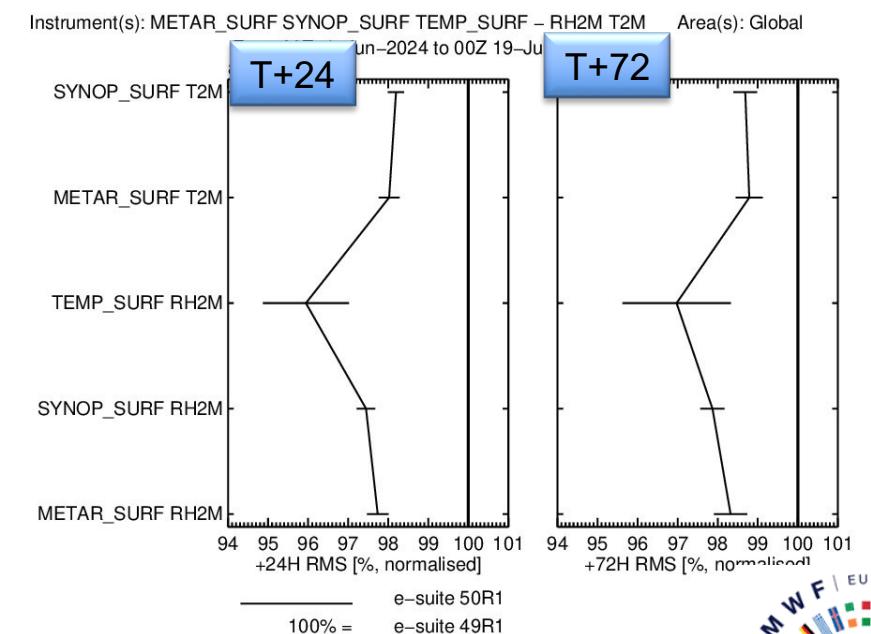
T2m assimilation: Weak constraint 4d-var in the boundary layer

- Weak constraint extended to the boundary layer (& top soil temperature level) including representation of the diurnal cycle of model error. **Operational in 2026.**



Impacts for summer 2024

RMS of forecast departure against surface data



**Bias
correction
inside the DA
scheme**
ECMWF

**Online bias
correction in
forecast**

UK Met Office, ECCC,
ECMWF

**Adaptive
parameter tuning**
DWD, ECMWF,
ECCC

Spectral nudging
ECCC, CMA,
ECMWF, Meteo
France, UK
MetOffice

Adaptive parameter tuning at DWD

- **IDEA:** Use time-filtered analysis increments of near-surface variables (2m T, 10m winds, 2m relative humidity) to update tunable parameters in the forecasts.
- **Recently more parameters added to tuning:** now including hydraulic diffusivity of the soil, land albedo, surface transfer resistance, and the snow cover fraction diagnosis (at low snow amounts).

See Zängl (2023) <https://doi.org/10.1002/qj.4535> for further information

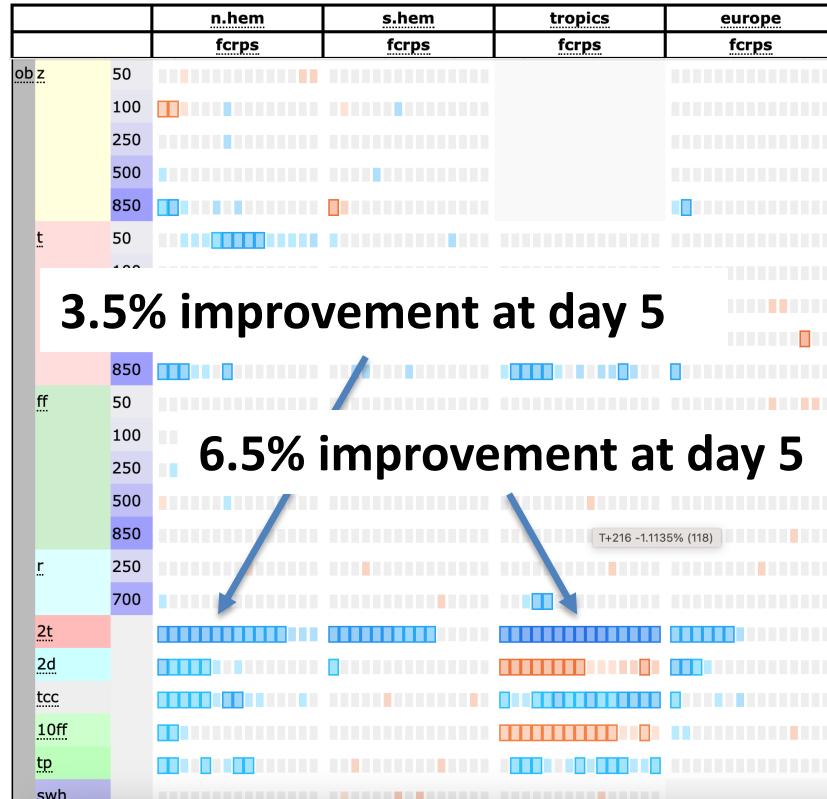
Adaptive Parameter Tuning for the land model including information from analysis increments

- Following the DWD approach, we use time-filtered analysis increments of screen-level variables used to update parameters in the forecasts (*parameter-of-the-day*).

#	Adapted parameters under testing
1	Minimum stomata resistance
2	Bare soil resistance to evaporation
3	Skin conductivity (veg, soil and snow)
4	Albedo of snow under forests
5	Albedo of bare soil

- Generally improving T2m scores. Largest impact in JJA, smaller impact in DJF season.
- Generally neutral to positive impact in other variables
- The new information generated by the parameter-of-the-day approach will not be used operationally, but rather to adjust default parameter values

Ensemble FC scores against obs, June-July



Self adjusting, online, surface-atmosphere bias correction

Dominik Jacques, data assimilation group, ECCC, Dorval

Biases of prediction systems have been addressed in many ways:

- Post-processing (e.g. MOS, UMOS and others)
- Adjustment of parameters controlling surface-atmosphere interactions (Zängl, 2023, 10.1002/qj.4535)
- Online correction of atmospheric biases using machine learning (Farchi et al. 2025, 10.1002/qj.4934)

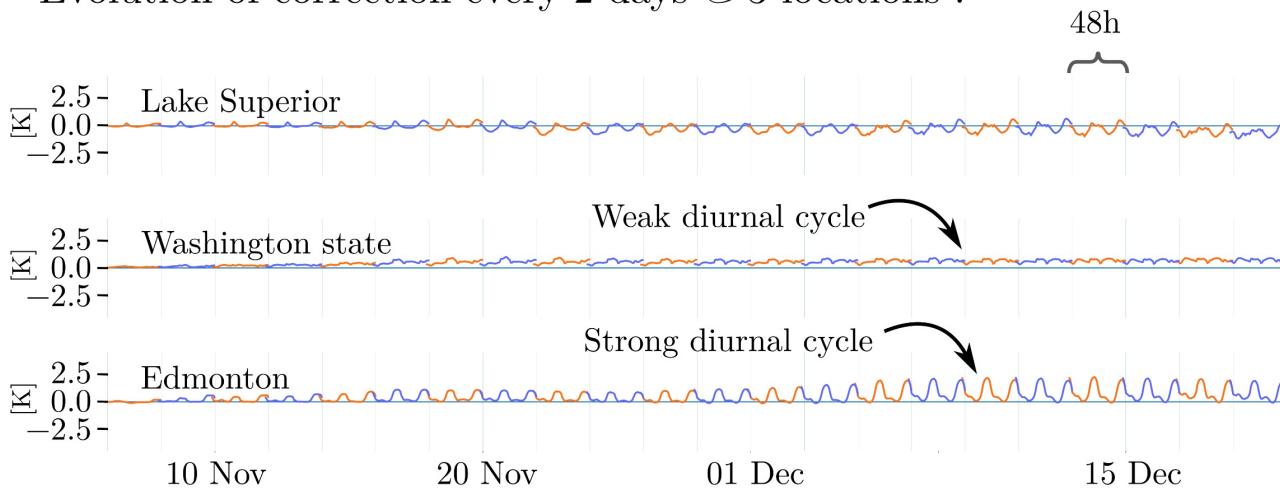
Environment and
Climate Change Canada
Environnement et
Changement climatique Canada

At ECCC, we are developing an approach where a correction term is added to surface temperature and moisture to compensate for the long-term (15 days +) average differences between analyses and forecasts.

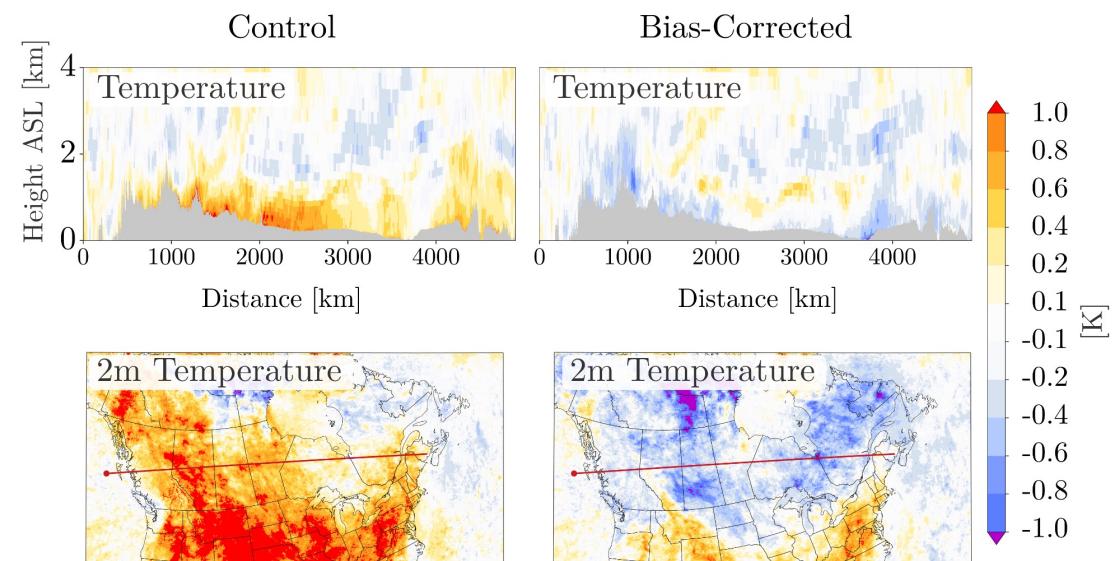
The correction is separately determined at every grid point as a function of lead time.

It is adjusted every day.

Evolution of correction every 2 days @ 3 locations :



18-day averages of Analysis - Forecast
for temperature at 24h lead time



**Bias
correction
inside the DA
scheme**
ECMWF

**Adaptive
parameter tuning**
DWD, ECMWF, ECCC

**Online bias
correction in
forecast**
UK Met Office, ECCC,
ECMWF

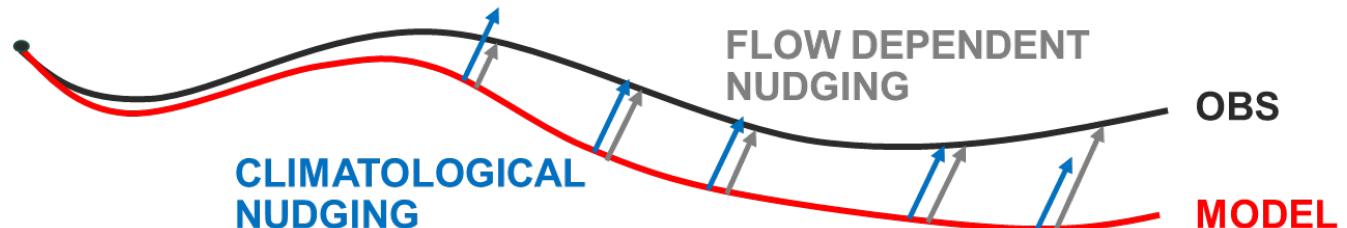
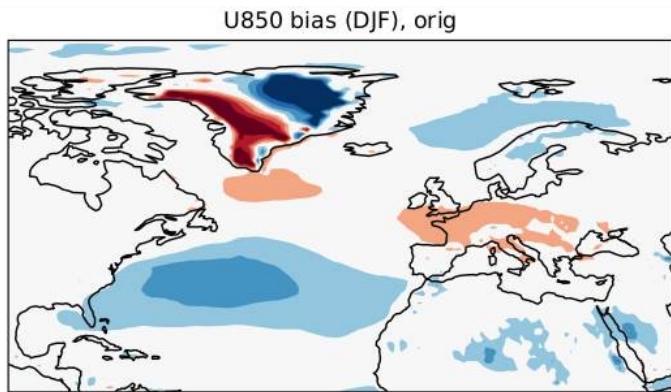
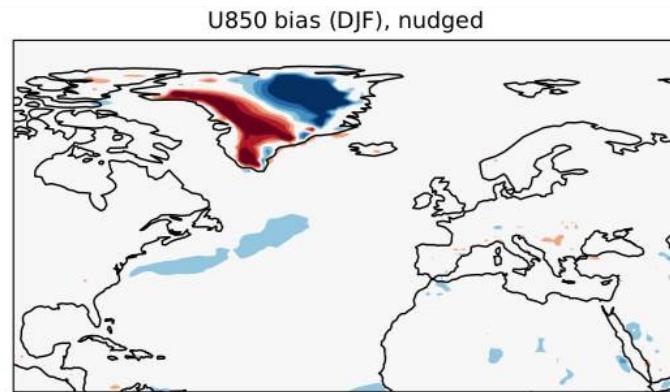
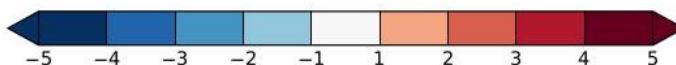
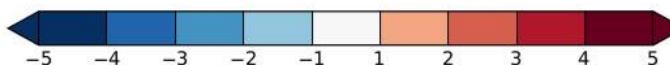
Spectral nudging
CMA, ECCC,
ECMWF, Meteo
France, UK
MetOffice

Machine learning for correcting seasonal forecast model biases

Steven Hardiman, Adam Scaife, et al.

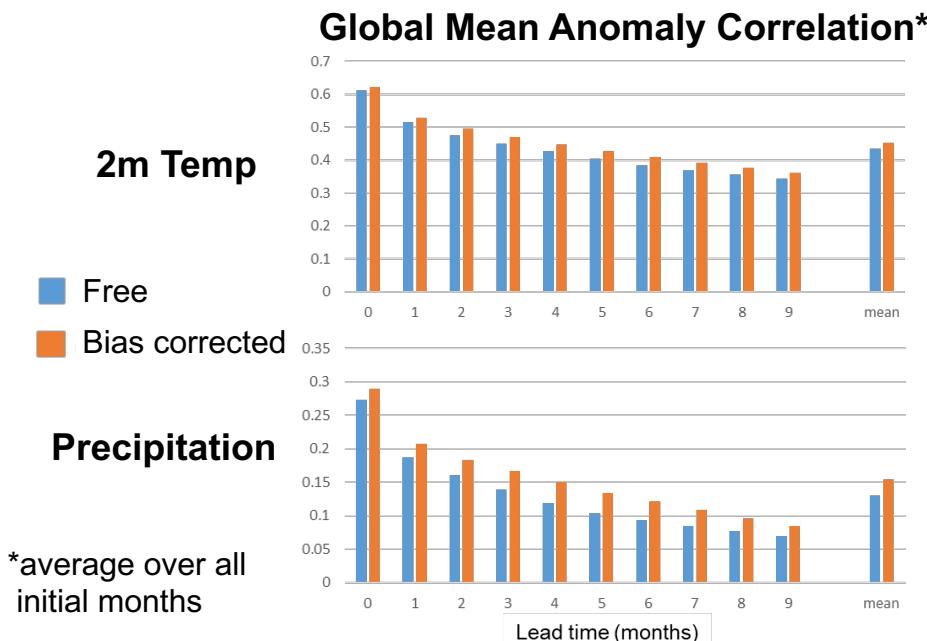
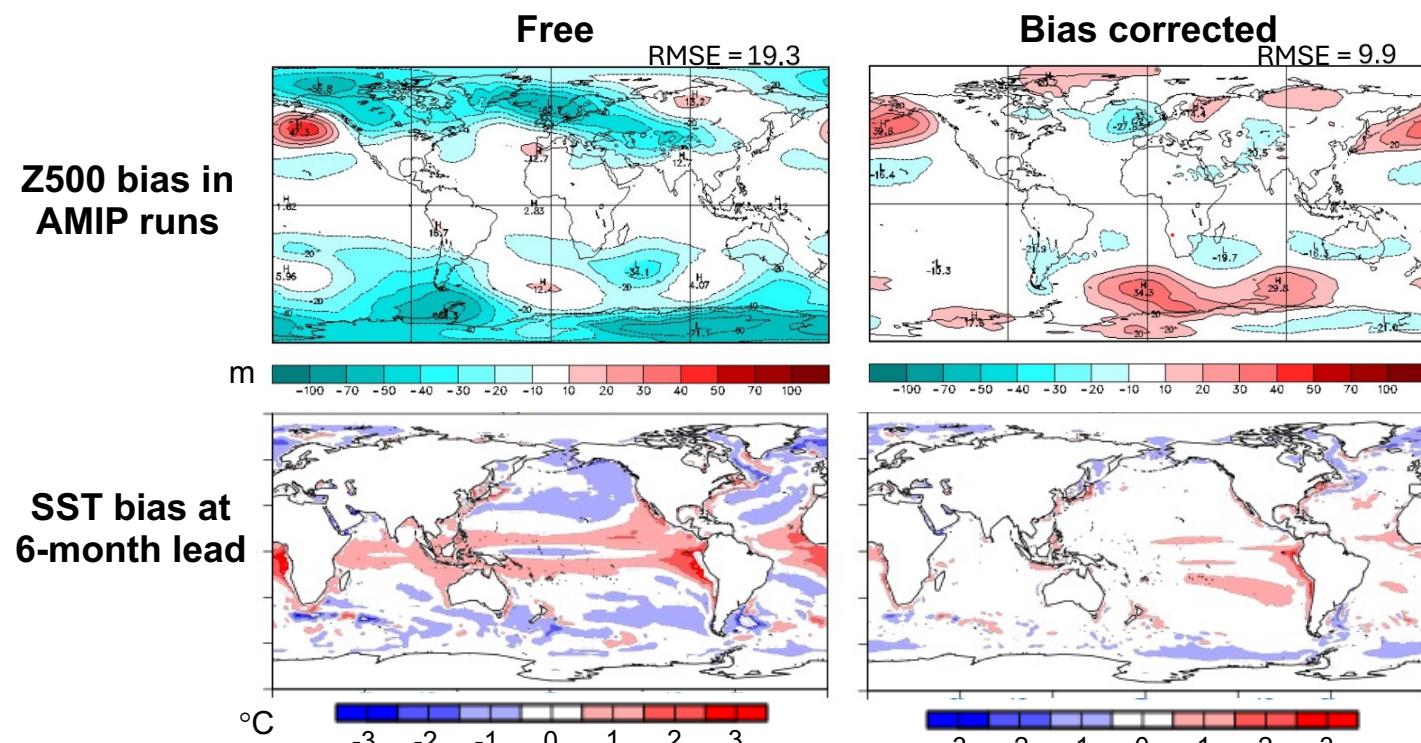
Can a neural network (NN) learn flow dependent model bias (grey arrows) due to GW and other missing processes, just from the current flow?

If so, could use it to bias-correct a future seasonal forecast in real time, where there are no observations



Running retrospective forecasts with the NN included (nudged) shows the greatest improvement in the north Atlantic sector (pictured) and a weak jet bias found in free-running retrospective forecasts (orig) is largely removed.

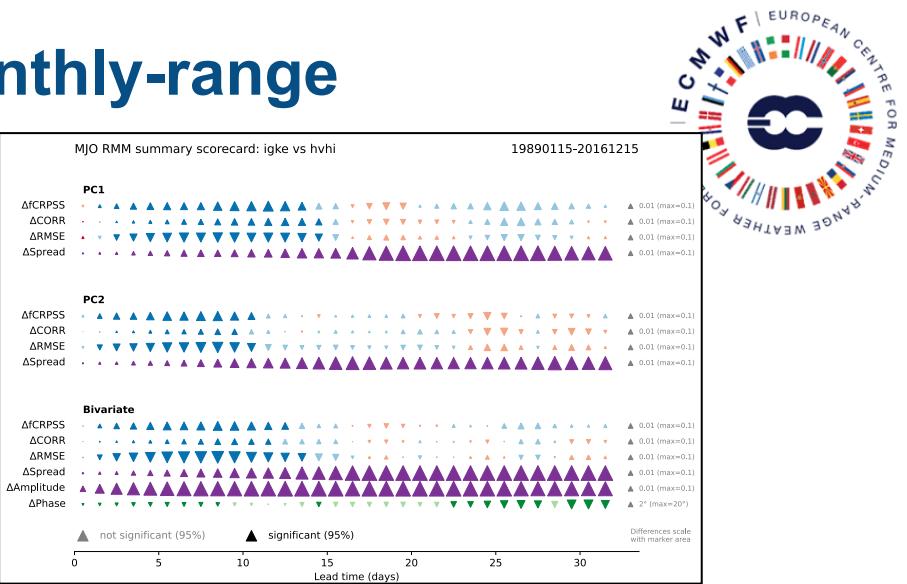
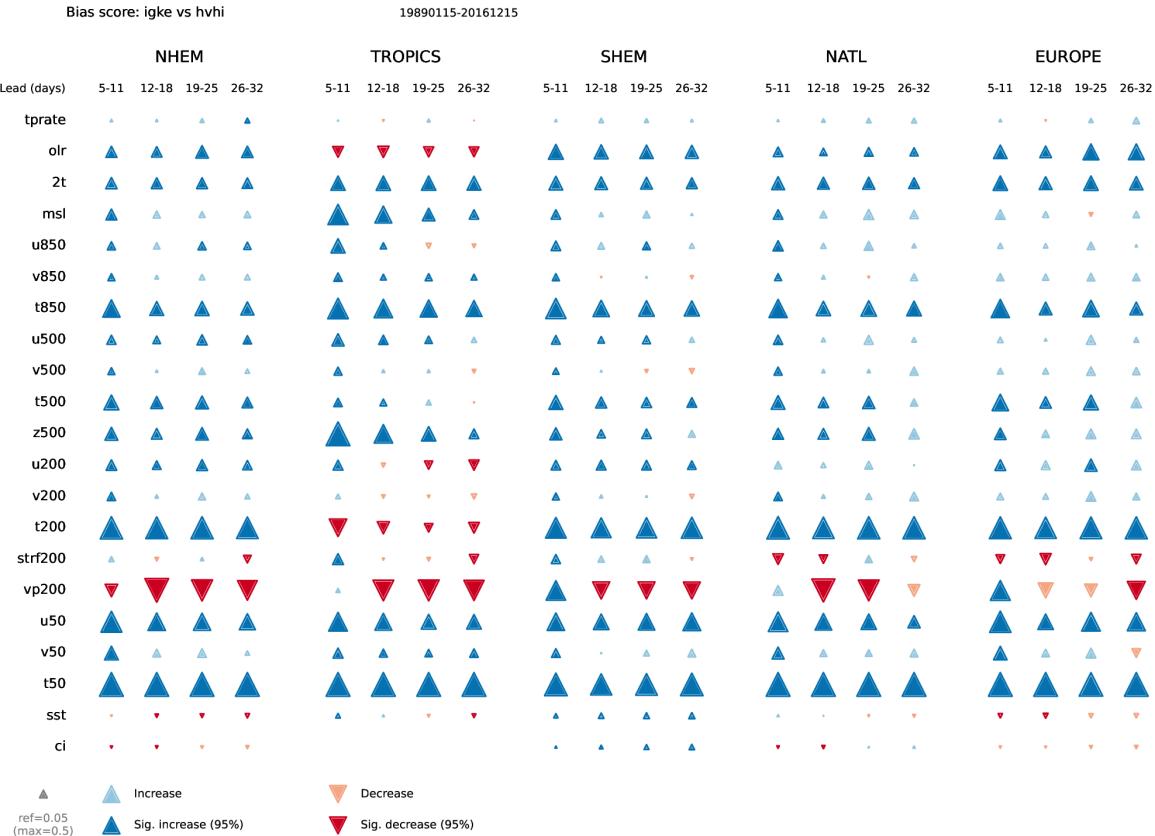
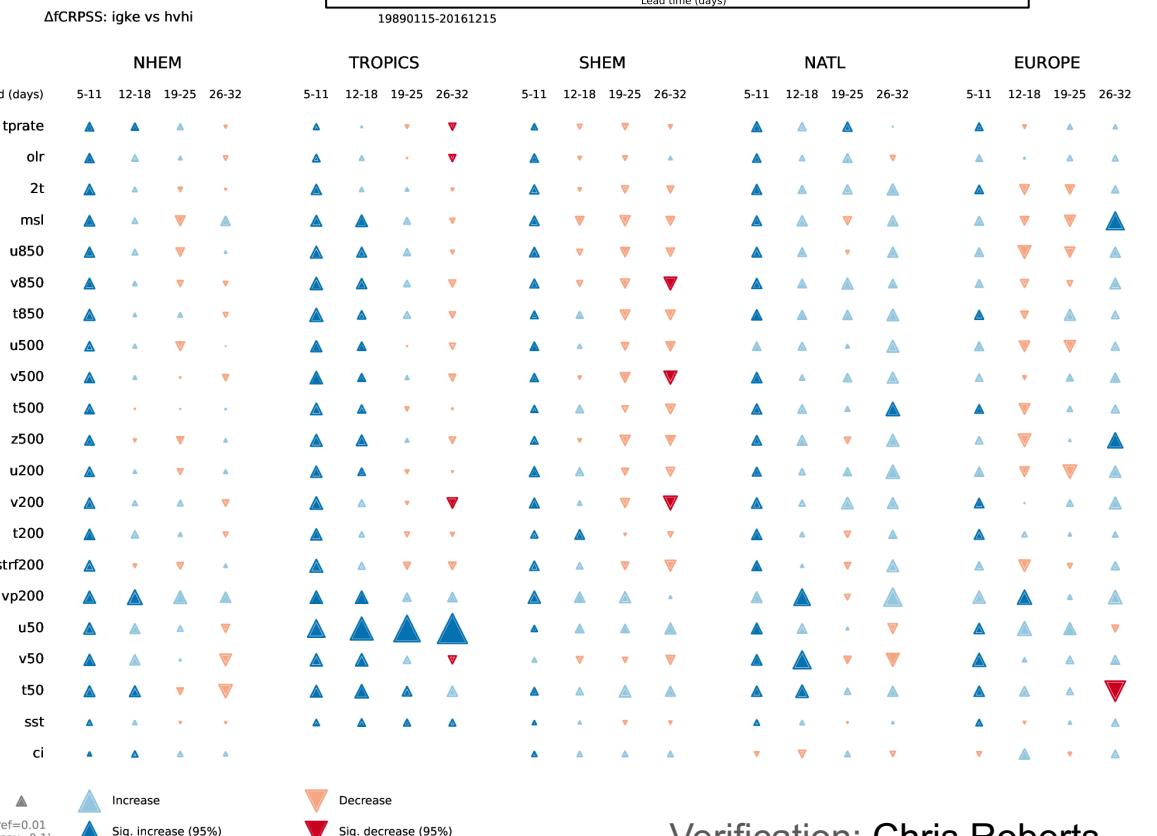
- **CanESM5** is one of two models contributing to ECCC's seasonal prediction system (GPC Montreal)
- Uniquely among current prediction models, employs **atmosphere and ocean** online bias correction
- [Kharin & Scinocca \(2012\)](#) methodology: nudging run → annual cycle of nudging terms → tendency correction
 - Atmosphere: T,u,v,q, nudging parameters optimized as in [Scinocca & Kharin \(2024\)](#)
 - Ocean: temperature/salinity nudging
- Atmosphere/ocean **biases reduced** →
- Pattern of ENSO variability and associated teleconnection improved



- **Seasonal prediction skill improved** globally at all lead times, even though ENSO (Nino3.4) skill slightly degraded

Flow-dependent online bias correction: target monthly-range

- Column NN trained to predict large-scale U/V/T model error, estimated from 14 years of 6-hrly spectral nudging tendencies.
- Applying this flow-dependent NN bias correction online results in:
 - Improvements in mean biases to week 4
 - Improvements in anomalies by 1-3% to week 1 (week 2 in tropics)
 - Improvements in MJO and NINO indices
- BUT: Apart from QBO & MJO improvement, applying 6-hrly model error climatology gives similar results.



Learning the model of model error

We consider a hybrid model formulation for the IFS, where the model is parameterized by a set of parameters p :

$$x_{k+1} = \mathcal{M}_{k+1:k}^{nn}(p, x_k) = \mathcal{M}_{k+1:k}(x_k) + \mathcal{F}(p, x_0)$$

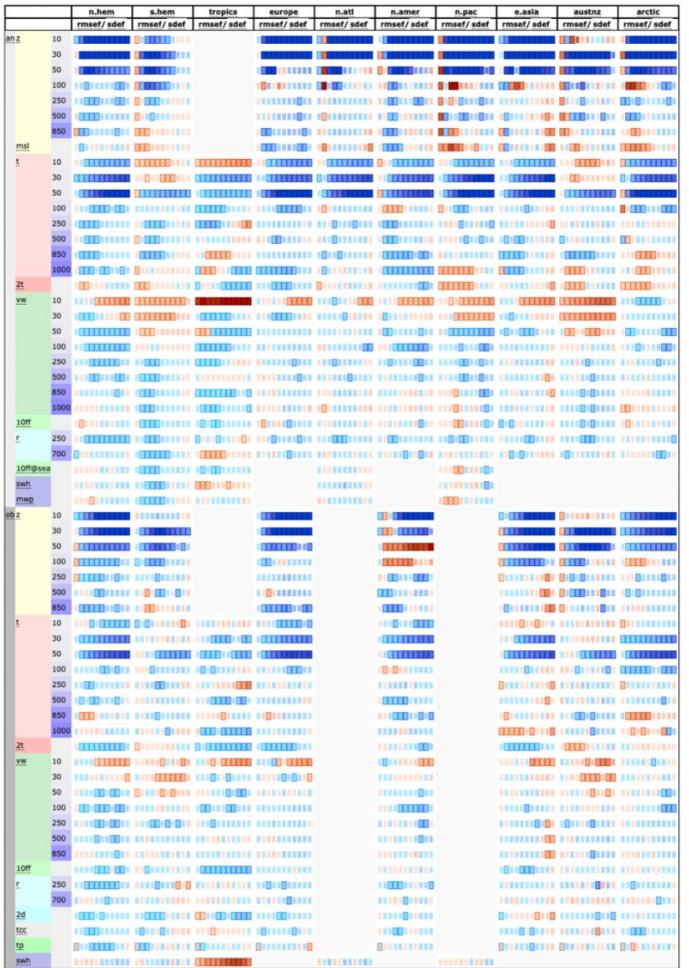
The NN is first **trained offline**, using operational analyses (as predictors) and analysis increments (as targets) at the start of each DA window

Subsequently, the NN can be further **trained online** in 4D-Var. The non-linear 4D-Var cost function takes the form:

$$\begin{aligned} \mathcal{J}^{nn}(p, x_0) &= \frac{1}{2} \|x_0 - x_0^b\|_{B^{-1}}^2 + \frac{1}{2} \|p - p^b\|_{P^{-1}}^2 \\ &+ \frac{1}{2} \sum_{k=0}^L \|y_k - \mathcal{H}_k \circ \mathcal{M}_{k:0}^{nn}(p, x_0)\|_{R_k^{-1}}^2. \end{aligned}$$

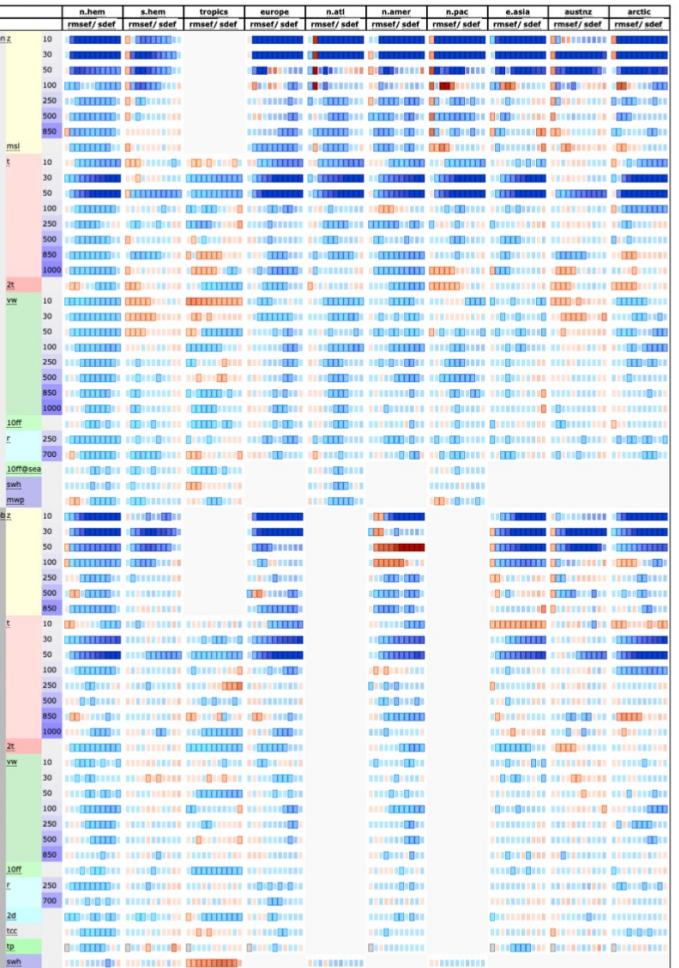
The cost function is minimized following the standard incremental 4D-Var formulation

Impact of online training on forecast scores



Bias-
corrected
worse

Bias-corrected better



Training the NN online
improves the forecast
scores

Currently investigating
the impact of:

- the data assimilation window length
- the spatial resolution of the NN correction
- the temporal resolution of the NN correction

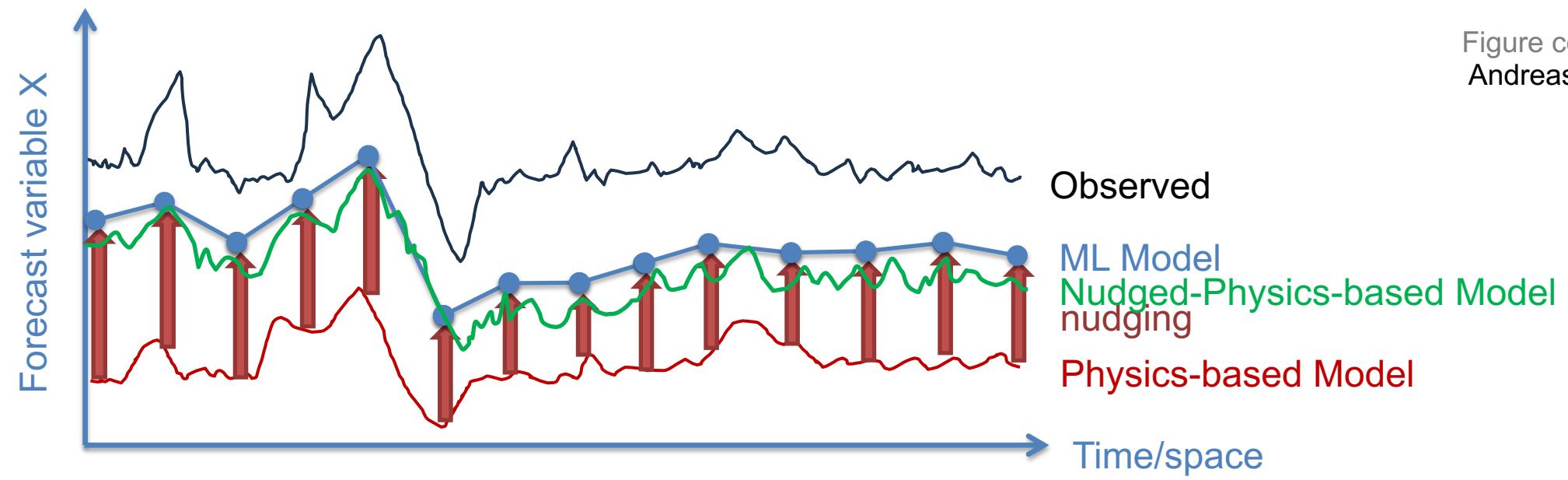
Figure: Score card 2022/06/03 to 2022/07/28. 24H assimilation window with **offline** NN model error correction.

**Bias
correction
inside the DA
scheme**
ECMWF

**Adaptive
parameter tuning**
DWD, ECMWF,
ECCC

**Online bias
correction**
ECCC, UK Met Office,
ECMWF

Spectral nudging
ECCC, CMA,
ECMWF, Meteo
France, UK
MetOffice

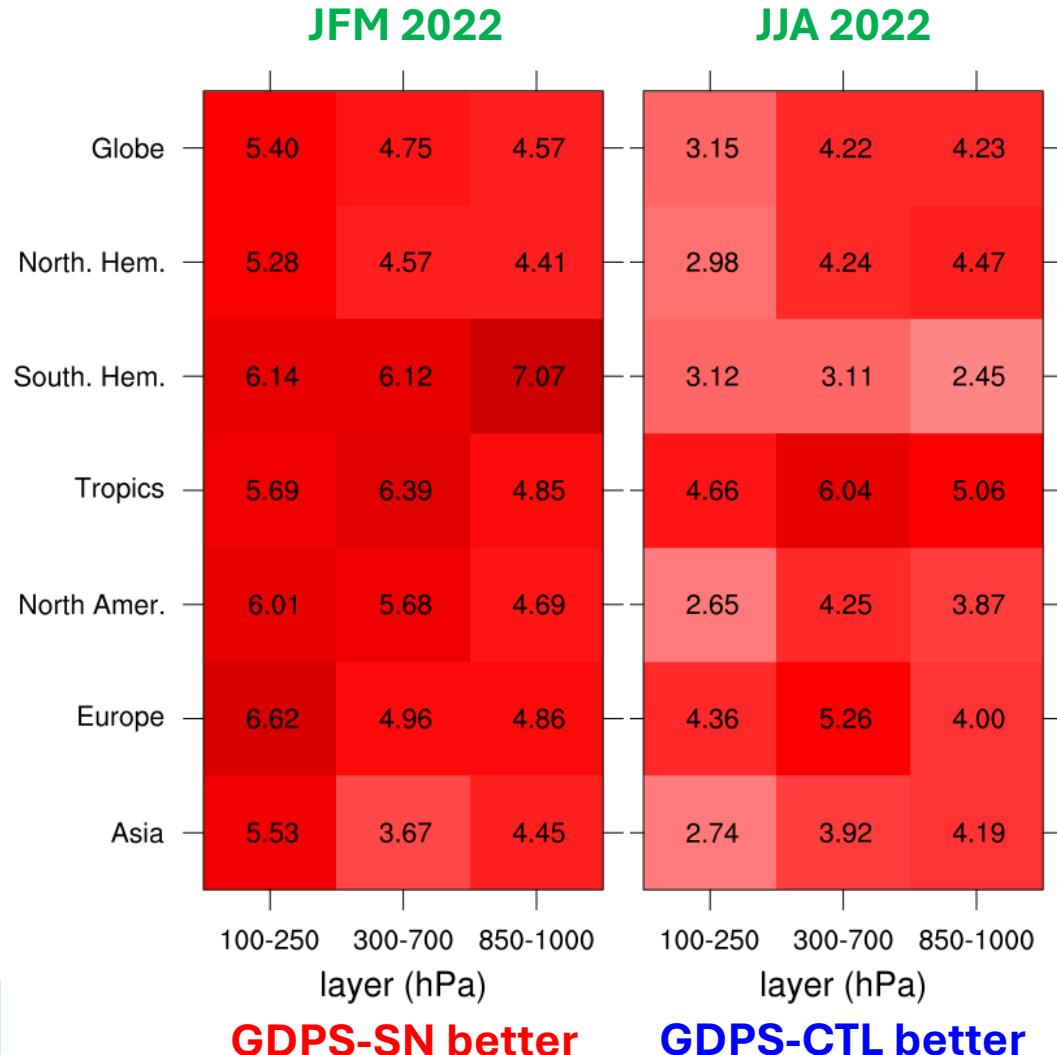


Global Spectral Nudging

- Spectrally nudging Global Environmental Multiscale (GEM; physical model)-predicted large scales (> 2500 km) towards GEML (the ML model at ECCC) leads to:
 - Substantial reduction in RMSE compared to the operational GEM-based system (half-day improvements on the global scale)
 - Guaranteed physical consistency between fields
 - A complete set of meteorologically important variables already available with GEM
- Mesoscales develop unperturbed without showing any sign of smoothing.
 - Tropical cyclone intensities are unaffected by nudging while the position errors are reduced.

A well-designed fusion of MLWP and NWP approaches can mitigate their individual limitations while providing a better meteorological guidance

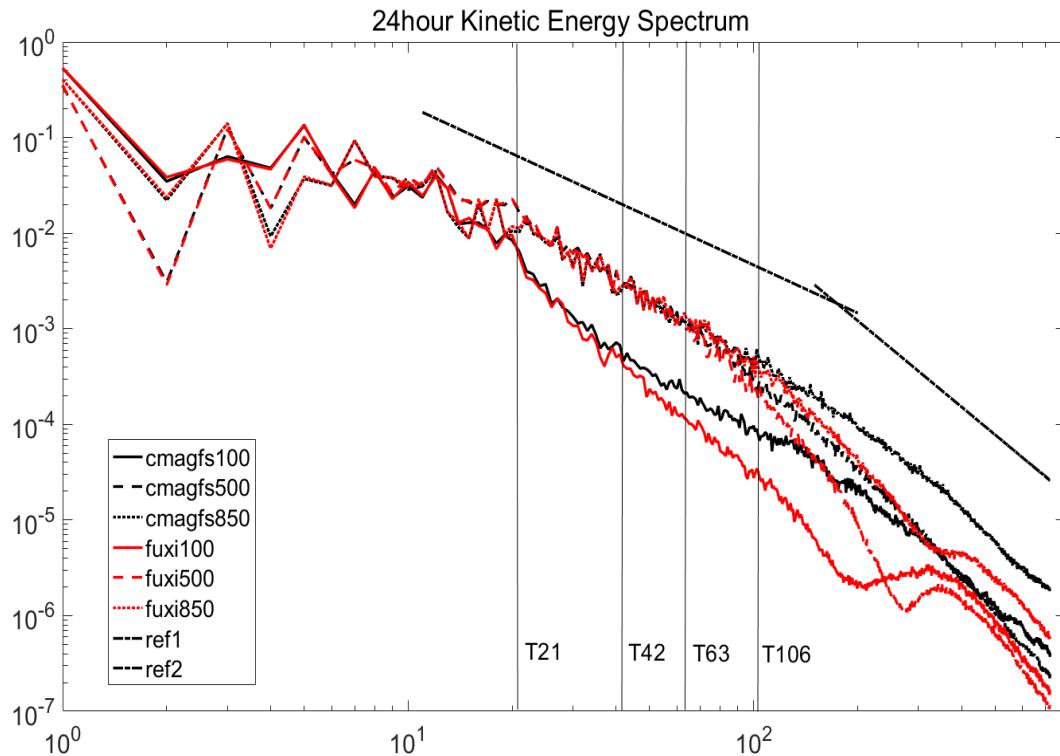
Environment and
Climate Change Canada
Environnement et
Changement climatique Canada



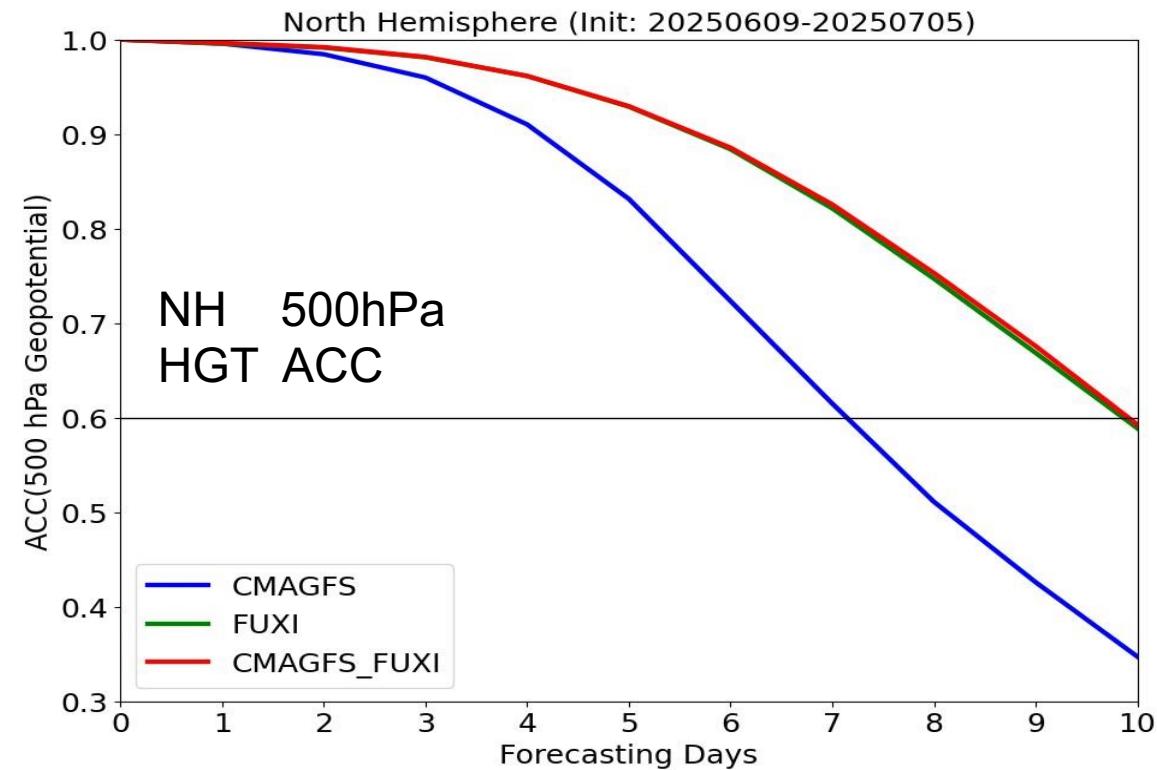
Fractional RMSE changes (%) based on comparisons against radiosonde observations aggregated over all variables and all lead times. For details, please check: <https://doi.org/10.1175/WAF-D-24-0139.1>

Online Bias Correction of Large-Scale Circulation in CMA-GFS

Using **spectral nudging** methods, develop a hybrid system that combine the advantages of **large-scale simulation of ML model (FUXI)** and the **fine-scale simulation of physical model (CMA-GFS)**



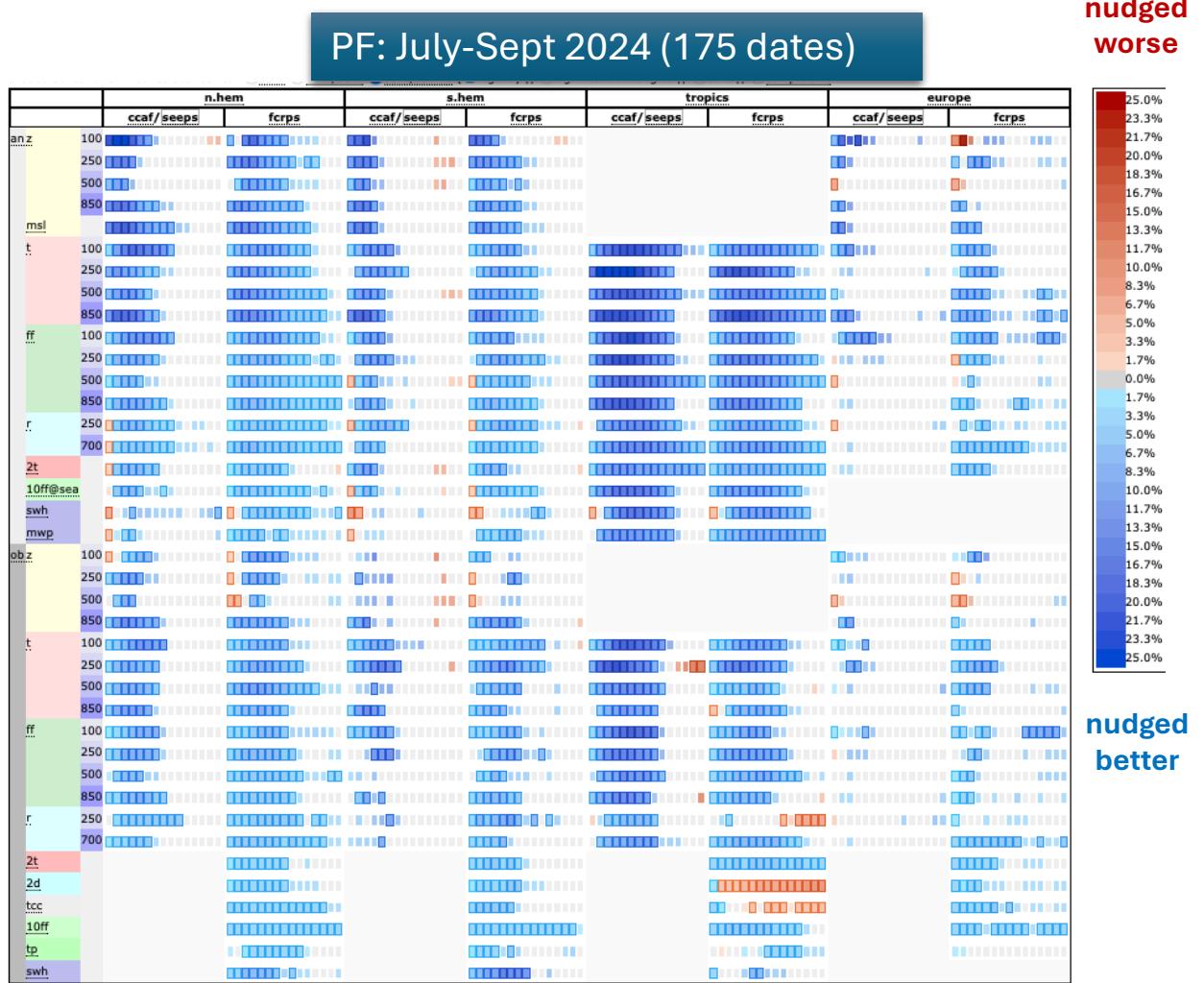
Nudged variables: Pi, Th, U, V
 Truncation wave number: T42
 Relaxation time: 6hour
 Vertical range: 600-200hPa



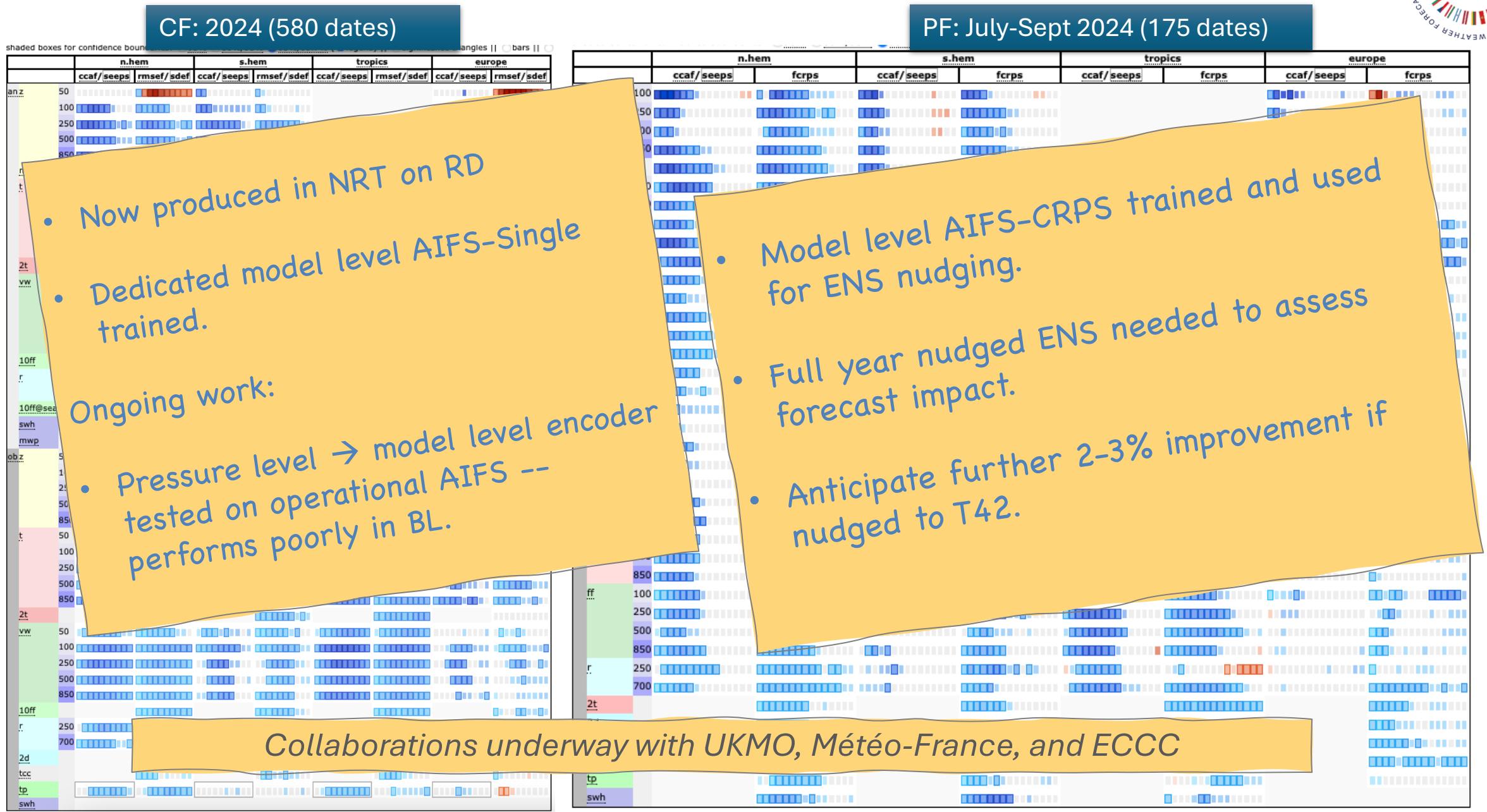
Currently, FUXI is initialized with ERA5 data
 Future work:
 Fine-tune FUXI using CMA-GFS analysis
 Establish the cycle experiment system

Nudging IFS to AIFS on large scales: CF & PF

- ECMWF adopted the same approach as ECCC, nudging T_v & VO at T21.
- Dedicated AIFS model that predicts on 137 model levels trained for nudging:
Both AIFS-Single for deterministic and AIFS-CRPS for ensemble



Nudging IFS to AIFS on large scales: CF & PF



Online bias correction at Météo-France

Strategy

- Nudging ARPEGE towards AIFS forecasts to benefit from AIFS improved forecast capability at large scales
- While still benefiting from the current physical system wealth of diagnostics used by end-users.

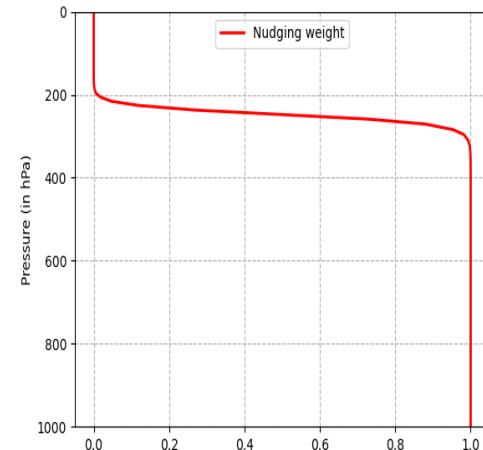
AIFS

- **Version trained by ECMWF** (thanks to M. Clare, I. Polichtchouk, M. Chantry) on ERA5 and finetune on IFS, initialized with our in-home ARPEGE analyses.
- **Horizontal resolution:** 1° - O96 (TL191)
- **AIFS prognostic variables**
 - u,v,q,T,w on **77 the lowest IFS levels** (instead of 137)
 - sp, t2m, td2m, u850, v850, T500, Z500, skt, tcw, msl, 10u, 10v
- **Constant fields**
 - Orography, standard deviation of orography, slope, land-sea mask

Nudging configuration

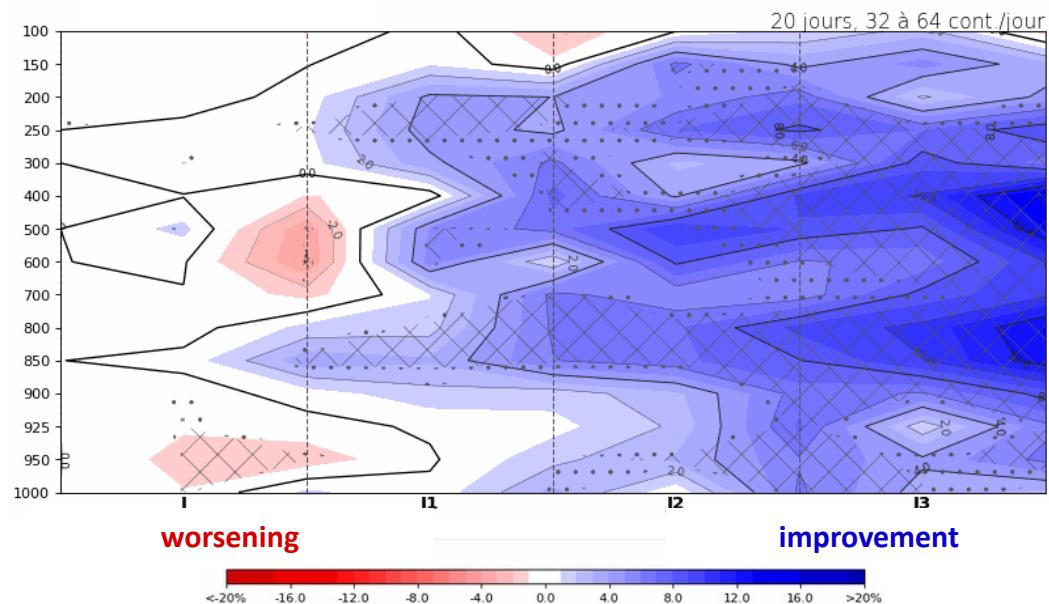
- **Only scales above T21c2.2 are nudged**
- **No nudging above ~200 hPa**
- **Nudged variables**
 - Virtual temperature and vorticity
- Nudging starts after a 6-hour lead time

➤ A large number of postprocessing operations needed



Online bias correction at Météo-France

Impact of nudging ARPEGE towards AIFS EUROPE



Temperature RMSE change between the AIFS-nudged system and the reference system (cy48t1). RMSEs are computed in reference to the radiosounding observation network as a function of lead time

Courtesy V. Chabot

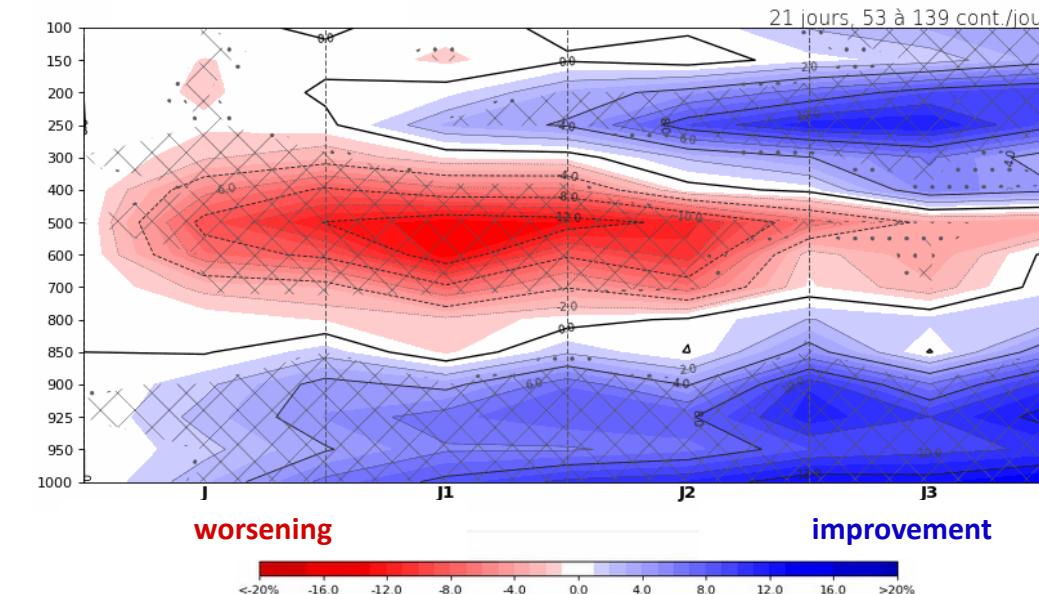
Score card over a European domain

Score change between the AIFS-nudged system and the reference system (cy48t1). Scores are computed in reference to radiosoundings (RS), in-home analyses (ANA-PO) and ECMWF analyses (Ana. IFS), and presented as a function of lead time

Online bias correction at Météo-France

Difficulties over mountainous areas

Impact of nudging ARPEGE towards AIFS ASIA



Temperature RMSE change between the AIFS-nudged system and the reference system (cy48t1). RMSEs are computed in reference to the radiosounding observation network as a function of lead time

Perspectives

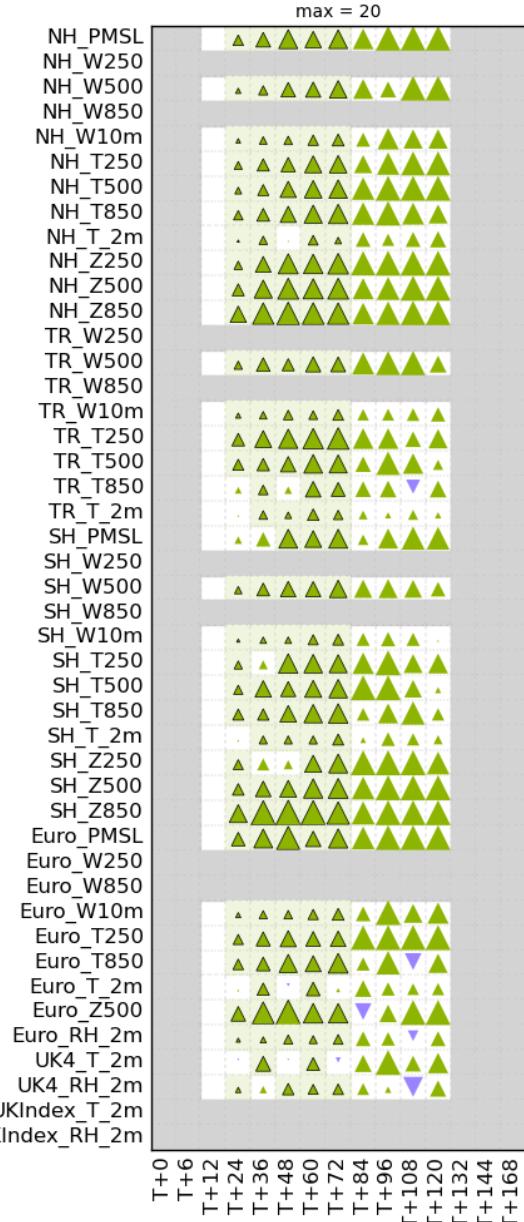
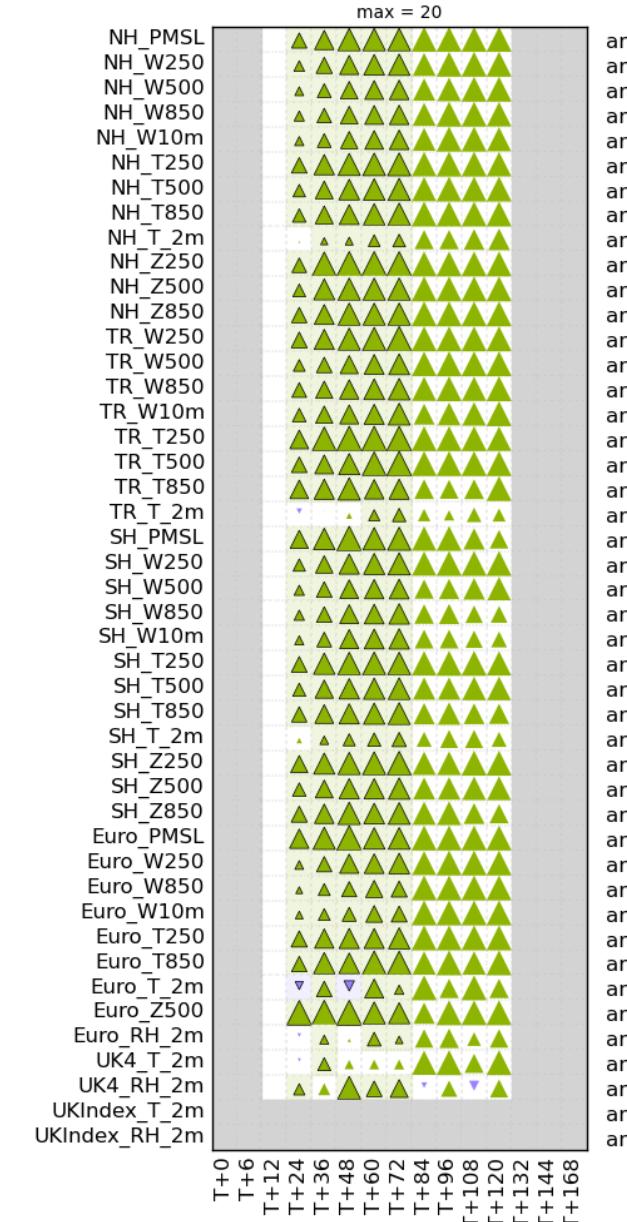
- Further quantify and understand the impact of nudging
- **Finetune AIFS on our own analyses** to reduce post-processing operations and improve consistency with ARPEGE orography

Set-up

- Nudge UM to ml-AIFS between 300m and 30 km.
- Use filter scale of ~600km
- Apply nudging every 3rd time step to save cost.

Verification

- 9-13% improvement in NWP index, vs observations or analysis
- GAL9 vs GA6 was 2.5-4.5% improvement, so this is perhaps comparable to ~20 years of traditional model development!
- Tallies with what ECCC and ECMWF see



Tropical cyclones

- Significant improvement in TC tracks
- Day 5 track errors reduced from ~375km to ~225km
- No change to intensity, as measured by central pressure, vorticity, 10m wind-speed, ...
- If anything, nudged runs are slightly better!

