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Ocean Model Spin-Up Practices in Diverse Contexts

The group has had meetings with a
variety of different types of modeling
centers over the past few years.

The goal is to collect information about
practices for ocean model spin-up in
coupled configurations, including
especially:

CMIP-class projections

Mesoscale and km-scale sims.

S28S forecasts
Coupled NWP

Earth System Modelling

It has become clear that a diverse set
of approaches are used, and that
these depend on application.

There is the potential for learning
across disciplines, and new
mathematical acceleration
approaches that may be useful.

A community paper is being created
to draw together and share these
insights.
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Ocean Spin-Up Theory
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It is the propagation of waves or advection along isopycnals that spins up a
non-diffusive model... Timescales set by advection/wave crossing times
(Pedlosky et al. 1984). Diffusion takes longer (Boccaletti et al. 2004).
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Sea Surface Temperature (SST) Anomalies and Maps
Observation-based estimates and CMIP6 multi-model means, biases and projected cha
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Ocean Heat Content (OHC) Anomalies and Maps
Observation-based estimates and CMIP6 multi-model means, biases and projected changes
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Whole-Depth Ocean Heat Content Anomaly Ensemble from Observations and Reanalyses

Sampled OHCA Ensemble with Internal Uncertainty
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Simple Emulator: 2-Layer Homogeneous Energy Balance Model G. Hall and BFK. Regional mixed
(Hasselmann 1976; Gnanadesikan, 1999; Gregory, 2000; Winton et  'averdepth asaclimate

al. 2010; Geoffroy et al. 2013; Palmer et al. 2018)

This emulator has parameters that are not observable,

but...
can be estimated by DECK simulations

(a) Timescale diagram
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constraint. In revision.
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(b) Example EBM-¢ fit: CESM2




CMIP5 Ocean Model Timescales (Geoffroy et al. 2013)

From this analysis, one could shorten
spin-up to:

O(4.2 yr) for global mean SST spin-up
O(290 yr) for global mean OHCA spin-up

Observations say oldest water is O(1500
yr)--Gebbie & Huybers (2011, 2012)

Hence the CMIP approach, where a
piControl run of many hundreds of years,
after a previous (?? yr) spin-up

Earth System Modelling

TABLE 2. The atmosphere/land/upper-ocean heat capacity C,
deep-ocean heat capacity C, heat-exchange coefficient vy, and fast
and slow relaxation times estimates in the framework of the EBM-¢
of the 16 CMIP5 models used in this paper, and their multimodel
mean and standard deviation.

CWyr Cy(Wyr v (W TP T

Model m 2K m?K) m?K) (yr) (yr)
BCC-CSM1-1 8.4 56 0.59 41 152
BNU-ESM 73 89 0.54 50 262
CanESM2 8.0 77 0.54 4.5 239
CCSM4 7.6 72 0.81 3.0 160
CNRM-CM5.1 8.3 95 0.51 52 266
CSIRO-Mk3.6.0 8.5 76 0.71 42 316
FGOALS-s2 7.5 138 0.72 43 387
GFDL-ESM2M 8.8 112 0.84 3.6 233
GISS-E2-R 6.1 134 1.06 1.7 224
HadGEM2-ES 7.5 98 0.49 54 457
INM-CM4 8.5 271 0.67 4.0 546
IPSL-CM5A-LR 8.1 100 0.57 55 327
MIROCS5 8.7 158 0.73 3.6 338
MPI-ESM-LR 8.5 78 0.62 4.0 220
MRI-CGCM3 9.3 68 0.59 44 181
NorESM1-M 9.7 121 0.76 41 328
Multimodel mean 8.2 109 0.67 42 290
Standard deviation 0.9 52 0.15 0.9 107
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Estuary Ocean Models: Predictability Timescales
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Mixed Layer Models: Predictability Timescales

JOHNSON ET AL.

time

. AX!
L\/ Ensemble AX?

: Vector AX?

MLD

AX"

A Finite-Time Ensemble Method for Mixed Layer Model Comparison

LEAH JOHNSON,? BAYLOR FOX-KEMPER,® QING L1, HIEU T. PHAM,® AND SUTANU SARKAR®

(e ESMO

Earth System Modelling
and Observations

JOURNAL OF PHYSICAL OCEANOGRAPHY

'VOLUME 53

(@)
0r A . 0
l ® SMC-KEPS-ST
1 J ’ " A sMC-MY-ST J
E‘-ZO | el SMC-LT 20
g J—
§ 40/
340+ y
=
60— L L L 1 L L L -60 ST T
®)
° ePBL-ST‘ 0
B ePBL-LT
‘E-20 20
5 T
o
540 0| & ;
) —
60 L I I L I L ST LT
©
4 KPP-CVMIX-ST 0
® KPP-ROMS-ST
= A KPP-ENTR-LT
E-20r B-KPP-EFACTORLT .20
= ¥ KPPR-LT
5 ——
S 40| -40 —=
-60 1 L L L i | | f | oL— 71
06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 ST LT

days in June 2018

WCRP"

World Climate
Research Programme



The GFDL CM4X-p125 Exception:

6.4.3 Summarizing the Mesoscale Dominance Hypothesis

We hypothesize that there are three ocean model properties necessary to support a
centennial rather than the millennial time scale for piControl thermal equilibration into an
ocean that is cooler (with roughly 400 Z] less heat content than early 21st century) in its 1850
piControl state: (a) enhanced fidelity of mesoscale features, including transient eddies and
boundary currents; (b) accurate strength and geography of parameterized numerical mixing
processes; and (c) negligible levels of spurious mixing from numerical discretization. We
refer to ocean models that possess these three properties as mesoscale dominant models.
Mesoscale dominant models contrast to those where deep ocean diabatic processes (either
parameterized or spurious numerically induced) play a prominent (and sometimes
dominant) role in piControl thermal equilibration. We infer that models that are not
mesoscale dominant engage their deep ocean circulation during the 1850 piControl, thus
rendering far longer thermal equilibration time scales. These long thermal spin-ups also
affect long spin-up times for biogeochemical cycles, though biogeochemical spin-ups are
also impacted by other processes (Khatiwala, 2023, 2024; Orr et al., 2017).
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The GFDL CM4X-p125 Exception:

6.4.3 Summarizing the Mesoscale Dominance Hypothesis

We hypothesize that there are three ocean model properties necessary to support a
centennial rather than the millennial time scale for piControl thermal equilibration into an
ocean that is cooler (with roughly 400 Z] less heat content than early 21st century) in its 1850
piControl state: (a) enhanced fidelity of mesoscale features, including transient eddies and
boundary currents; (b) accurate strength and geography of parameterized numerical mixing
processes; and (c) negligible levels of spurious mixing from numerical discretization. We
refer to ocean models that possess these three properties as mesoscale dominant models.
Mesoscale dominant models contrast to those where deep ocean diabatic processes (either
parameterized or spurious numerically induced) play a prominent (and sometimes
dominant) role in piControl thermal equilibration. We infer that models that are not
mesoscale dominant engage their deep ocean circulation during the 1850 piControl, thus
rendering far longer thermal equilibration time scales. These long thermal spin-ups also
affect long spin-up times for biogeochemical cycles, though biogeochemical spin-ups are
also impacted by other processes (Khatiwala, 2023, 2024; Orr et al., 2017).
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Acceleration Techniques, e.g., Anderson Accel.
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